Graph Learning for Planning: The Story Thus Far and Open Challenges
- URL: http://arxiv.org/abs/2412.02136v1
- Date: Tue, 03 Dec 2024 03:49:27 GMT
- Title: Graph Learning for Planning: The Story Thus Far and Open Challenges
- Authors: Dillon Z. Chen, Mingyu Hao, Sylvie Thiébaux, Felipe Trevizan,
- Abstract summary: We study the usage of graph learning for planning thus far by studying the theoretical and empirical effects on learning and planning performance.
Our studies accumulate in the GOOSE framework which learns domain knowledge from small planning tasks in order to scale up to much larger planning tasks.
- Score: 2.4186604326116874
- License:
- Abstract: Graph learning is naturally well suited for use in planning due to its ability to exploit relational structures exhibited in planning domains and to take as input planning instances with arbitrary number of objects. In this paper, we study the usage of graph learning for planning thus far by studying the theoretical and empirical effects on learning and planning performance of (1) graph representations of planning tasks, (2) graph learning architectures, and (3) optimisation formulations for learning. Our studies accumulate in the GOOSE framework which learns domain knowledge from small planning tasks in order to scale up to much larger planning tasks. In this paper, we also highlight and propose the 5 open challenges in the general Learning for Planning field that we believe need to be addressed for advancing the state-of-the-art.
Related papers
- Plan-over-Graph: Towards Parallelable LLM Agent Schedule [53.834646147919436]
Large Language Models (LLMs) have demonstrated exceptional abilities in reasoning for task planning.
This paper introduces a novel paradigm, plan-over-graph, in which the model first decomposes a real-life textual task into executable subtasks and constructs an abstract task graph.
The model then understands this task graph as input and generates a plan for parallel execution.
arXiv Detail & Related papers (2025-02-20T13:47:51Z) - Introduction to AI Planning [0.0]
The notes begin by introducing the state model and move on to exploring classical planning.
The most extensive section is dedicated to Hierarchical Task Network (HTN) planning.
The lecture notes end with a bonus chapter on the Planning Domain Definition (PDDL) Language.
arXiv Detail & Related papers (2024-12-16T10:38:04Z) - Graph Learning for Numeric Planning [2.969582361376132]
We propose data-efficient and interpretable machine learning models for learning to solve numeric planning tasks.
This involves constructing a new graph kernel for graphs with both continuous and categorical attributes.
Experiments show that our graph kernels are vastly more efficient and generalise better than graph neural networks for numeric planning.
arXiv Detail & Related papers (2024-10-31T16:16:51Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - A Planning Ontology to Represent and Exploit Planning Knowledge for Performance Efficiency [6.87593454486392]
We consider the problem of automated planning, where the objective is to find a sequence of actions that will move an agent from an initial state of the world to a desired goal state.
We hypothesize that given a large number of available planners and diverse planning domains; they carry essential information that can be leveraged to identify suitable planners and improve their performance for a domain.
arXiv Detail & Related papers (2023-07-25T14:51:07Z) - Human-instructed Deep Hierarchical Generative Learning for Automated
Urban Planning [57.91323079939641]
We develop a novel human-instructed deep hierarchical generative model to generate optimal urban plans.
The first stage is to label the grids of a target area with latent functionalities to discover functional zones.
The second stage is to perceive the planning requirements to form urban functionality projections.
The third stage is to leverage multi-attentions to model the zone-zone peer dependencies of the functionality projections to generate grid-level land-use configurations.
arXiv Detail & Related papers (2022-12-01T23:06:41Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z) - Robust Hierarchical Planning with Policy Delegation [6.1678491628787455]
We propose a novel framework and algorithm for hierarchical planning based on the principle of delegation.
We show this planning approach is experimentally very competitive to classic planning and reinforcement learning techniques on a variety of domains.
arXiv Detail & Related papers (2020-10-25T04:36:20Z) - Planning with Learned Object Importance in Large Problem Instances using
Graph Neural Networks [28.488201307961624]
Real-world planning problems often involve hundreds or even thousands of objects.
We propose a graph neural network architecture for predicting object importance in a single inference pass.
Our approach treats the planner and transition model as black boxes, and can be used with any off-the-shelf planner.
arXiv Detail & Related papers (2020-09-11T18:55:08Z) - Plan2Vec: Unsupervised Representation Learning by Latent Plans [106.37274654231659]
We introduce plan2vec, an unsupervised representation learning approach that is inspired by reinforcement learning.
Plan2vec constructs a weighted graph on an image dataset using near-neighbor distances, and then extrapolates this local metric to a global embedding by distilling path-integral over planned path.
We demonstrate the effectiveness of plan2vec on one simulated and two challenging real-world image datasets.
arXiv Detail & Related papers (2020-05-07T17:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.