Susceptibility of entanglement entropy: a universal indicator of quantum criticality
- URL: http://arxiv.org/abs/2412.02236v1
- Date: Tue, 03 Dec 2024 08:04:58 GMT
- Title: Susceptibility of entanglement entropy: a universal indicator of quantum criticality
- Authors: Pritam Sarkar,
- Abstract summary: A measure of how sensitive the entanglement entropy is in a quantum system, has been proposed and its information origin is discussed.
It has been demonstrated for two exactly solvable spin systems, that thermodynamic criticality is directly textitindicated by finite size scaling of the global maxima.
- Score: 7.342677574855651
- License:
- Abstract: A measure of how sensitive the entanglement entropy is in a quantum system, has been proposed and its information geometric origin is discussed. It has been demonstrated for two exactly solvable spin systems, that thermodynamic criticality is directly \textit{indicated} by finite size scaling of the global maxima and turning points of the susceptibility of entanglement entropy through numerical analysis - obtaining power laws. Analytically we have proved those power laws for $| \ \lambda_c(N)-\lambda_c^{\infty}|$ as $N\to \infty$ in the cases of finite 1D transverse field ising model (TFIM) ($\lambda=h$) and XY chain ($\lambda=\gamma$). The integer power law appearing for XY model has been verified using perturbation theory in $\mathcal{O}(\frac{1}{N})$ and the fractional power law appearing in the case of TFIM, is verified by an exact approach involving Chebyshev polynomials, hypergeometric functions and complete elliptic integrals. Furthermore a set of potential applications of this quantity under quantum dynamics and also for non-integrable systems, are briefly discussed. The simplicity of this setup for understanding quantum criticality is emphasized as it takes in only the reduced density matrix of appropriate rank.
Related papers
- Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories [47.02222405817297]
A fundamental question in quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of resources for quantum information processing by a single function.
In 2008, a promising formulation was proposed, linking resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing.
In 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility of such a formulation of the second law.
arXiv Detail & Related papers (2024-08-05T18:00:00Z) - One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Symmetry shapes thermodynamics of macroscopic quantum systems [0.0]
We show that the entropy of a system can be described in terms of group-theoretical quantities.
We apply our technique to generic $N$ identical interacting $d$-level quantum systems.
arXiv Detail & Related papers (2024-02-06T18:13:18Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Entanglement Entropy of $(2+1)$D Quantum Critical Points with Quenched
Disorder: Dimensional Reduction Approach [0.0]
We compute the entanglement entropy of $(2+1)$-dimensional quantum critical points with randomness.
As a concrete example, we reveal novel entanglement signatures of $(2+1)$-dimensional Dirac fermion exposed to a random magnetic field.
arXiv Detail & Related papers (2022-01-13T15:55:14Z) - Sublinear quantum algorithms for estimating von Neumann entropy [18.30551855632791]
We study the problem of obtaining estimates to within a multiplicative factor $gamma>1$ of the Shannon entropy of probability distributions and the von Neumann entropy of mixed quantum states.
We work with the quantum purified query access model, which can handle both classical probability distributions and mixed quantum states, and is the most general input model considered in the literature.
arXiv Detail & Related papers (2021-11-22T12:00:45Z) - Eigenstate entanglement in integrable collective spin models [0.0]
The average entanglement entropy (EE) of the energy eigenstates in non-vanishing partitions has been recently proposed as a diagnostic of integrability in quantum many-body systems.
We numerically demonstrate that the aforementioned average EE in the thermodynamic limit is universal for all parameter values of the LMG model.
arXiv Detail & Related papers (2021-08-22T23:00:04Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Entropy scaling law and the quantum marginal problem [0.0]
Quantum many-body states that frequently appear in physics often obey an entropy scaling law.
We prove a restricted version of this conjecture for translationally invariant systems in two spatial dimensions.
We derive a closed-form expression for the maximum entropy density compatible with those marginals.
arXiv Detail & Related papers (2020-10-14T22:30:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.