論文の概要: Connecting Large Language Models with Blockchain: Advancing the Evolution of Smart Contracts from Automation to Intelligence
- arxiv url: http://arxiv.org/abs/2412.02263v2
- Date: Fri, 06 Dec 2024 16:43:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 14:23:56.104979
- Title: Connecting Large Language Models with Blockchain: Advancing the Evolution of Smart Contracts from Automation to Intelligence
- Title(参考訳): 大規模言語モデルをブロックチェーンに接続する - 自動化から知性へのスマートコントラクトの進化を促進する
- Authors: Youquan Xian, Xueying Zeng, Duancheng Xuan, Danping Yang, Chunpei Li, Peng Fan, Peng Liu,
- Abstract要約: 本稿では,Large Language Modelsをブロックチェーンデータ,sysnameと統合するための普遍的なフレームワークを提案し,実装する。
意味的関連性と真理発見の手法を組み合わせることで,革新的なデータ集約手法であるfuncnameを導入する。
実験結果は、40%の悪意のあるノードであっても、最適なベースラインと比較して平均17.74%の精度でデータ精度を向上させることを示した。
- 参考スコア(独自算出の注目度): 2.2727580420156857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blockchain smart contracts have catalyzed the development of decentralized applications across various domains, including decentralized finance. However, due to constraints in computational resources and the prevalence of data silos, current smart contracts face significant challenges in fully leveraging the powerful capabilities of Large Language Models (LLMs) for tasks such as intelligent analysis and reasoning. To address this gap, this paper proposes and implements a universal framework for integrating LLMs with blockchain data, {\sysname}, effectively overcoming the interoperability barriers between blockchain and LLMs. By combining semantic relatedness with truth discovery methods, we introduce an innovative data aggregation approach, {\funcname}, which significantly enhances the accuracy and trustworthiness of data generated by LLMs. To validate the framework's effectiveness, we construct a dataset consisting of three types of questions, capturing Q\&A interactions between 10 oracle nodes and 5 LLM models. Experimental results demonstrate that, even with 40\% malicious nodes, the proposed solution improves data accuracy by an average of 17.74\% compared to the optimal baseline. This research not only provides an innovative solution for the intelligent enhancement of smart contracts but also highlights the potential for deep integration between LLMs and blockchain technology, paving the way for more intelligent and complex applications of smart contracts in the future.
- Abstract(参考訳): ブロックチェーンのスマートコントラクトは、分散金融を含むさまざまなドメインにわたる分散アプリケーションの開発を触媒にしている。
しかし、計算資源の制約とデータサイロの普及により、現在のスマートコントラクトは、インテリジェント分析や推論といったタスクに大規模言語モデル(LLM)の強力な能力を完全に活用する上で、大きな課題に直面している。
このギャップに対処するために、ブロックチェーンデータとLLMを統合するための普遍的なフレームワーク {\sysnameの提案と実装を行い、ブロックチェーンとLLM間の相互運用性の障壁を効果的に克服する。
意味的関連性と真理発見の手法を組み合わせることで,LLMが生成するデータの正確性と信頼性を大幅に向上させる,革新的なデータ集約手法 {\funcname} を導入する。
フレームワークの有効性を検証するために,10のオラクルノードと5のLLMモデル間のQ\&Aインタラクションをキャプチャして,3種類の質問からなるデータセットを構築した。
実験結果から、40\%の悪意のあるノードであっても、最適なベースラインと比較して平均17.74\%の精度でデータ精度を向上させることが示された。
この研究は、スマートコントラクトのインテリジェントな拡張のための革新的なソリューションを提供するだけでなく、LLMとブロックチェーン技術との深い統合の可能性を強調し、スマートコントラクトのよりインテリジェントで複雑なアプリケーションへの道を開いた。
関連論文リスト
- Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
人間のフィードバックからの強化学習は、大規模言語モデルを整合させる効果的な手法として現れてきた。
制御された復号化は、再訓練せずに推論時にモデルを整列するメカニズムを提供する。
本稿では,既存の既成のLCMポリシを活用するエージェントベースのデコーディング戦略の混合を提案する。
論文 参考訳(メタデータ) (2025-03-27T17:34:25Z) - A Multi-Agent Framework for Automated Vulnerability Detection and Repair in Solidity and Move Smart Contracts [4.3764649156831235]
本稿では,Large Language Models(LLMs)を利用したスマートコントラクトの脆弱性を自動的に検出し,修復する新しいマルチエージェントフレームワークであるSmartifyを提案する。
Smartifyでは、プログラムの概念や言語固有のセキュリティ原則に基づいてコードを分析するために、さまざまな微調整のLLMに取り組んでいる専門エージェントのチームが採用されている。
以上の結果から,Smartifyは従来のLLMを超越し,Llama 3.1のような汎用モデルの能力向上を実現している。
論文 参考訳(メタデータ) (2025-02-22T20:30:47Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - SmartLLM: Smart Contract Auditing using Custom Generative AI [0.0]
本稿では,LLaMA 3.1モデルにレトリーバル拡張生成(RAG)を応用した新しいアプローチであるSmartLLMを紹介する。
ERC標準からドメイン固有の知識を統合することで、SmartLLMはMythrilやSlitherのような静的解析ツールよりも優れたパフォーマンスを実現している。
実験の結果、100%の完全なリコールと70%の精度スコアが示され、脆弱性の特定におけるモデルの堅牢性を強調した。
論文 参考訳(メタデータ) (2025-02-17T06:22:05Z) - Leveraging Large Language Models and Machine Learning for Smart Contract Vulnerability Detection [0.0]
我々は、モデル性能を比較するために、機械学習アルゴリズムを訓練、テストし、タイプに応じてスマートコントラクトコードを分類する。
我々の研究は、機械学習と大規模言語モデルを組み合わせて、さまざまなスマートコントラクトの脆弱性を検出するリッチで解釈可能なフレームワークを提供します。
論文 参考訳(メタデータ) (2025-01-04T08:32:53Z) - SmartLLMSentry: A Comprehensive LLM Based Smart Contract Vulnerability Detection Framework [0.0]
本稿では,大規模言語モデル(LLM)を利用したスマートコントラクト脆弱性検出手法であるSmartLLMSentryを紹介する。
モデルトレーニングと評価のために、ランダムに選択された5つの脆弱性の特別なデータセットを作成しました。
その結果, GPT-4 はルール生成における GPT-3 と比較して, 精度が 91.1% であることがわかった。
論文 参考訳(メタデータ) (2024-11-28T16:02:01Z) - Leveraging Fine-Tuned Language Models for Efficient and Accurate Smart Contract Auditing [5.65127016235615]
本稿では,スマートコントラクト監査において,より小型で微調整されたモデルを用いて,同等あるいは優れた結果が得られる可能性について検討する。
本稿では,スマートコントラクト監査のための費用対効果の高い特化モデルの開発を目的としたFTSmartAuditフレームワークを紹介する。
コントリビューションには,(1)データ準備,トレーニング,評価,継続的な学習を効率化するシングルタスク学習フレームワーク,(2)ドメイン固有知識蒸留を利用した堅牢なデータセット生成手法,(3)モデルの正確性と堅牢性を維持するための適応型学習戦略などが含まれている。
論文 参考訳(メタデータ) (2024-10-17T09:09:09Z) - LLM-SmartAudit: Advanced Smart Contract Vulnerability Detection [3.1409266162146467]
本稿では,スマートコントラクトの脆弱性を検出し解析する新しいフレームワークであるLLM-SmartAuditを紹介する。
LLM-SmartAuditは、マルチエージェントの会話アプローチを用いて、監査プロセスを強化するために、特殊なエージェントとの協調システムを採用している。
私たちのフレームワークは、従来のツールがこれまで見落としていた複雑なロジックの脆弱性を検出することができます。
論文 参考訳(メタデータ) (2024-10-12T06:24:21Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSimは、大規模言語モデル(LLM)における戦略的相互作用と協調的意思決定を研究するために設計された生成シミュレーションプラットフォームである。
最強のLSMエージェントを除く全てのエージェントは、GovSimの持続的均衡を達成することができず、生存率は54%以下である。
道徳的思考の理論である「大学化」に基づく推論を活用するエージェントは、持続可能性を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-04-25T15:59:16Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
大規模言語モデル(LLM)は、非常に高度な自然言語処理を持つ。
アプリケーションがマルチエージェント環境に拡大するにつれて、包括的な評価フレームワークの必要性が生じる。
この研究は、マルチエージェント設定内でLLMを評価するための新しい競合ベースのベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - SmartIntentNN: Towards Smart Contract Intent Detection [5.9789082082171525]
スマートコントラクトにおける開発者の意図の検出を自動化するためのディープラーニングベースのツールであるtextscSmartIntentNN(Smart Contract Intent Neural Network)を紹介した。
提案手法では,スマートコントラクトコードのコンテキスト表現にユニバーサル文を統合するとともに,K平均クラスタリングアルゴリズムを用いて,インテント関連コード特徴の強調を行う。
実世界の1万件のスマートコントラクトの評価は、textscSmartIntentNNがすべてのベースラインを越え、F1スコアの0.8633を達成していることを示している。
論文 参考訳(メタデータ) (2022-11-24T15:36:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。