COMET:Combined Matrix for Elucidating Targets
- URL: http://arxiv.org/abs/2412.02471v2
- Date: Thu, 02 Jan 2025 11:09:40 GMT
- Title: COMET:Combined Matrix for Elucidating Targets
- Authors: Haojie Wang, Zhe Zhang, Haotian Gao, Xiangying Zhang, Jingyuan Li, Zhihang Chen, Xinchong Chen, Yifei Qi, Yan Li, Renxiao Wang,
- Abstract summary: We introduce the COMET, a multi-technological modular target prediction tool.<n>With meticulously curated data, the COMET database encompasses 990,944 drug-target interaction pairs and 45,035 binding pockets.<n>In comparative testing, COMET outperformed five other well-known algorithms, offering nearly an 80% probability of accurately identifying at least one true target.
- Score: 6.78997744505788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying the interaction targets of bioactive compounds is a foundational element for deciphering their pharmacological effects. Target prediction algorithms equip researchers with an effective tool to rapidly scope and explore potential targets. Here, we introduce the COMET, a multi-technological modular target prediction tool that provides comprehensive predictive insights, including similar active compounds, three-dimensional predicted binding modes, and probability scores, all within an average processing time of less than 10 minutes per task. With meticulously curated data, the COMET database encompasses 990,944 drug-target interaction pairs and 45,035 binding pockets, enabling predictions for 2,685 targets, which span confirmed and exploratory therapeutic targets for human diseases. In comparative testing using datasets from ChEMBL and BindingDB, COMET outperformed five other well-known algorithms, offering nearly an 80% probability of accurately identifying at least one true target within the top 15 predictions for a given compound. COMET also features a user-friendly web server, accessible freely at https://www.pdbbind-plus.org.cn/comet.
Related papers
- MuCoS: Efficient Drug Target Discovery via Multi Context Aware Sampling in Knowledge Graphs [0.0]
Multi Context Aware Sampling (MuCoS) is a novel framework that prioritizes high-density neighbours to capture salient structural patterns.
Experiments on the KEGG50k dataset demonstrate that MuCoS outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2025-03-11T06:08:42Z) - MKDTI: Predicting drug-target interactions via multiple kernel fusion on graph attention network [37.40418564922425]
We formulate a model called MKDTI by extracting kernel information from various layer embeddings of a graph attention network.
We use a Dual Laplacian Regularized Least Squares framework to forecast novel drug-target entity connections.
arXiv Detail & Related papers (2024-07-14T02:53:25Z) - MOTIVE: A Drug-Target Interaction Graph For Inductive Link Prediction [0.29998889086656577]
This paper introduces MOTIVE, a Morphological cOmpound Target Interaction Graph dataset comprising Cell Painting features for 11,000 genes and 3,600 compounds.
We provide random, cold-source (new drugs) and cold-target (new genes) data splits to enable rigorous evaluation under realistic use cases.
Our benchmark results show that graph neural networks that use Cell Painting features consistently outperform those that learn from graph structure alone.
arXiv Detail & Related papers (2024-06-12T21:18:14Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Meta-Path-based Probabilistic Soft Logic for Drug-Target Interaction
Prediction [36.08294497336554]
Drug-target interaction (DTI) prediction aims at predicting whether a drug will be bounded to a target.
Most of the recently proposed methods use single drug-drug similarity and target-target similarity information for DTI prediction.
We propose a network-based drug-target interaction prediction approach.
arXiv Detail & Related papers (2023-06-25T02:30:38Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - Drug-Target Interaction Prediction via an Ensemble of Weighted Nearest
Neighbors with Interaction Recovery [5.8683934849211745]
Drug-target interactions are predicted via structure-based drug similarities and sequence-based target protein similarities.
Most existing similarity-based methods follow the transductive setting.
A large amount of missing interactions in current DTI datasets hinders most DTI prediction methods.
We propose a new method denoted as Weighted k Nearest Neighbor with Interaction Recovery (WkNNIR)
arXiv Detail & Related papers (2020-12-22T19:54:18Z) - Combining Task Predictors via Enhancing Joint Predictability [53.46348489300652]
We present a new predictor combination algorithm that improves the target by i) measuring the relevance of references based on their capabilities in predicting the target, and ii) strengthening such estimated relevance.
Our algorithm jointly assesses the relevance of all references by adopting a Bayesian framework.
Based on experiments on seven real-world datasets from visual attribute ranking and multi-class classification scenarios, we demonstrate that our algorithm offers a significant performance gain and broadens the application range of existing predictor combination approaches.
arXiv Detail & Related papers (2020-07-15T21:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.