Segmentation of Coronary Artery Stenosis in X-ray Angiography using Mamba Models
- URL: http://arxiv.org/abs/2412.02568v1
- Date: Tue, 03 Dec 2024 16:54:46 GMT
- Title: Segmentation of Coronary Artery Stenosis in X-ray Angiography using Mamba Models
- Authors: Ali Rostami, Fatemeh Fouladi, Hedieh Sajedi,
- Abstract summary: This study employs five different variants of the Mamba-based model and one variant of the Swin Transformer-based model.
Best results showed an F1 score of 68.79% for the U-Mamba BOT model, representing an 11.8% improvement over the semi-supervised approach.
- Score: 5.086430262530704
- License:
- Abstract: Coronary artery disease stands as one of the primary contributors to global mortality rates. The automated identification of coronary artery stenosis from X-ray images plays a critical role in the diagnostic process for coronary heart disease. This task is challenging due to the complex structure of coronary arteries, intrinsic noise in X-ray images, and the fact that stenotic coronary arteries appear narrow and blurred in X-ray angiographies. This study employs five different variants of the Mamba-based model and one variant of the Swin Transformer-based model, primarily based on the U-Net architecture, for the localization of stenosis in Coronary artery disease. Our best results showed an F1 score of 68.79% for the U-Mamba BOT model, representing an 11.8% improvement over the semi-supervised approach.
Related papers
- SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - YOLO-Angio: An Algorithm for Coronary Anatomy Segmentation [13.603729336413833]
We present our solution to the Automatic Region-based Coronary Artery Disease diagnostics using X-ray angiography images (ARCADE) challenge held at MICCAI 2023.
Our three-stage approach combines preprocessing and feature selection by classical computer vision to enhance vessel contrast.
A final segmentation is based on a logic-based approach to reconstruct the coronary tree in a graph-based sorting method.
arXiv Detail & Related papers (2023-10-24T15:02:02Z) - StenUNet: Automatic Stenosis Detection from X-ray Coronary Angiography [5.430434855741553]
The severity of coronary artery disease (CAD) is quantified by the location, degree of narrowing (stenosis) and number of arteries involved.
The MICCAI grand challenge: Automatic Region-based Coronary Artery Disease diagnostics using the X-ray angiography imagEs (ARCADE) curated a dataset with stenosis annotations.
We propose the architecture and algorithm StenUNet to accurately detect stenosis from X-ray Coronary Angiography.
arXiv Detail & Related papers (2023-10-23T14:04:18Z) - ConvNeXtv2 Fusion with Mask R-CNN for Automatic Region Based Coronary
Artery Stenosis Detection for Disease Diagnosis [6.943548662802804]
We employ a specialized Convnext-V2 backbone based Mask RCNN model pre-trained for instance segmentation tasks.
Our approach achieves a substantial F1 score of 0.5353 in this demanding task.
arXiv Detail & Related papers (2023-10-07T09:09:05Z) - Hyper Association Graph Matching with Uncertainty Quantification for
Coronary Artery Semantic Labeling [4.9679652736351905]
We propose an innovative approach using the hyper association graph-matching neural network with uncertainty quantification (HAGMN-UQ) for coronary artery semantic labeling on ICAs.
Our model achieved an accuracy of 0.9345 for coronary artery semantic labeling with a fast inference speed, leading to an effective and efficient prediction in real-time clinical decision-making scenarios.
arXiv Detail & Related papers (2023-08-20T16:59:17Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.