論文の概要: DYffCast: Regional Precipitation Nowcasting Using IMERG Satellite Data. A case study over South America
- arxiv url: http://arxiv.org/abs/2412.02723v1
- Date: Mon, 02 Dec 2024 22:20:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:09:38.700022
- Title: DYffCast: Regional Precipitation Nowcasting Using IMERG Satellite Data. A case study over South America
- Title(参考訳): DYffCast: IMERG衛星データを用いた地域降雨予報 : 南アメリカを事例として
- Authors: Daniel Seal, Rossella Arcucci, Salva Rühling-Cachay, César Quilodrán-Casas,
- Abstract要約: 降水量を正確に把握する能力は、社会を守るためにますます重要になっている。
本稿では,近年の降水時発生モデルの成功に触発されて,DYffusionフレームワークをこの課題に拡張する。
DYffusionフレームワークを改良し、降雨データをモデル化し、MSE、MAE、LPIPSの知覚スコアを組み合わせた新たな損失関数を導入する。
- 参考スコア(独自算出の注目度): 3.583227696181354
- License:
- Abstract: Climate change is increasing the frequency of extreme precipitation events, making weather disasters such as flooding and landslides more likely. The ability to accurately nowcast precipitation is therefore becoming more critical for safeguarding society by providing immediate, accurate information to decision makers. Motivated by the recent success of generative models at precipitation nowcasting, this paper: extends the DYffusion framework to this task and evaluates its performance at forecasting IMERG satellite precipitation data up to a 4-hour horizon; modifies the DYffusion framework to improve its ability to model rainfall data; and introduces a novel loss function that combines MSE, MAE and the LPIPS perceptual score. In a quantitative evaluation of forecasts up to a 4-hour horizon, the modified DYffusion framework trained with the novel loss outperforms four competitor models. It has the highest CSI scores for weak, moderate, and heavy rain thresholds and retains an LPIPS score $<$ 0.2 for the entire roll-out, degrading the least as lead-time increases. The proposed nowcasting model demonstrates visually stable and sharp forecasts up to a 2-hour horizon on a heavy rain case study. Code is available at https://github.com/Dseal95/DYffcast.
- Abstract(参考訳): 気候変動は極端な降雨の頻度を増大させており、洪水や地すべりなどの気象災害も起こりやすい。
そのため、意思決定者に対して即時かつ正確な情報を提供することで、社会を守る上で、降水量を正確に予測する能力はますます重要になっている。
近年の降水時生成モデルの成功により,本研究はDYffusionフレームワークを本課題に拡張し,IMERG衛星降水量の予測性能を4時間水平線まで向上させるとともに,DYffusionフレームワークを改良して降水データをモデル化し,MSE,MAE,LPIPSの知覚スコアを組み合わせた新たな損失関数を導入する。
4時間の水平線での予測の定量的評価では、新しい損失をトレーニングした修正DYffusionフレームワークが4つの競合モデルを上回っている。
CSIスコアは、弱く、適度で、豪雨のしきい値が最も高く、LPIPSスコアはロールアウト全体に対して$<$ 0.2であり、リードタイムの増加に伴って最小限に低下する。
提案手法は, 豪雨ケーススタディにおいて, 2時間の地平線を目視的に安定し, 鋭い予報を行うものである。
コードはhttps://github.com/Dseal95/DYffcast.comで入手できる。
関連論文リスト
- Enhanced Precision in Rainfall Forecasting for Mumbai: Utilizing Physics Informed ConvLSTM2D Models for Finer Spatial and Temporal Resolution [0.0]
本研究では,降雨予測精度の向上を目的とした深層学習空間モデルを提案する。
この仮説を検証するため,インド・ムンバイに先立つ降水量6hrと12hrを予測するために,ConvLSTM2Dモデルを導入した。
論文 参考訳(メタデータ) (2024-04-01T13:56:12Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
本稿では,メソスケール降水分布と小規模パターンの予測を分離するために,決定的かつ確率的な部分からなるカスケードフレームワークCasCastを提案する。
CasCastは地域の極端降水量計のベースライン(+91.8%)をはるかに上回っている。
論文 参考訳(メタデータ) (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Nowcasting-Nets: Deep Neural Network Structures for Precipitation
Nowcasting Using IMERG [1.9860735109145415]
リカレントと畳み込み型ディープニューラルネットワーク構造を用いて、降水流の課題に対処する。
GPM (Global Precipitation Measurement, GPM) 統合マルチサテライトE(Multi-SatellitE Retrievals) を用いて、米国東部大陸の降水量データ(IMERG)を用いて、合計5つのモデルを訓練した。
また, 予測時間を最大1.5時間, フィードバックループアプローチを用いて4.5時間まで延長できるモデルについても検討した。
論文 参考訳(メタデータ) (2021-08-16T02:55:32Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
本稿では,降水流の識別と注意の両方を含む新しい深層学習モデルを提案する。
このモデルは、レーダーデータと実際の雨データの両方を含む、新しく構築されたベンチマークデータセットで検討される。
論文 参考訳(メタデータ) (2021-02-16T14:22:54Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。