Geographical Information Alignment Boosts Traffic Analysis via Transpose Cross-attention
- URL: http://arxiv.org/abs/2412.02839v1
- Date: Tue, 03 Dec 2024 21:04:49 GMT
- Title: Geographical Information Alignment Boosts Traffic Analysis via Transpose Cross-attention
- Authors: Xiangyu Jiang, Xiwen Chen, Hao Wang, Abolfazl Razi,
- Abstract summary: We propose a plug-in-and-play module for common GNN frameworks, termed Geographic Information Alignment (GIA)
This module can efficiently fuse the node feature and geographic position information through a novel Transpose Cross-attention mechanism.
Our method can obtain gains ranging from 1.3% to 10.9% in F1 score and 0.3% to 4.8% in AUC.
- Score: 4.323740171581589
- License:
- Abstract: Traffic accident prediction is crucial for enhancing road safety and mitigating congestion, and recent Graph Neural Networks (GNNs) have shown promise in modeling the inherent graph-based traffic data. However, existing GNN- based approaches often overlook or do not explicitly exploit geographic position information, which often plays a critical role in understanding spatial dependencies. This is also aligned with our observation, where accident locations are often highly relevant. To address this issue, we propose a plug-in-and-play module for common GNN frameworks, termed Geographic Information Alignment (GIA). This module can efficiently fuse the node feature and geographic position information through a novel Transpose Cross-attention mechanism. Due to the large number of nodes for traffic data, the conventional cross-attention mechanism performing the node-wise alignment may be infeasible in computation-limited resources. Instead, we take the transpose operation for Query, Key, and Value in the Cross-attention mechanism, which substantially reduces the computation cost while maintaining sufficient information. Experimental results for both traffic occurrence prediction and severity prediction (severity levels based on the interval of recorded crash counts) on large-scale city-wise datasets confirm the effectiveness of our proposed method. For example, our method can obtain gains ranging from 1.3% to 10.9% in F1 score and 0.3% to 4.8% in AUC.
Related papers
- Enhancing Graph Neural Networks in Large-scale Traffic Incident Analysis with Concurrency Hypothesis [2.3379022809760763]
We propose the Concurrency Prior (CP) method to enhance the predictive capabilities of general Graph Neural Network (GNN) models in traffic incident prediction tasks.
Our method allows GNNs to incorporate concurrent incident information, as mentioned in the hypothesis, via tokenization with negligible extra parameters.
The extensive experiments, utilizing real-world data across states and cities in the USA, demonstrate that integrating CP into 12 state-of-the-art GNN architectures leads to significant improvements.
arXiv Detail & Related papers (2024-11-04T19:22:33Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - A Sparse Cross Attention-based Graph Convolution Network with Auxiliary
Information Awareness for Traffic Flow Prediction [41.66129197681683]
This work proposes a deep encoder-decoder model entitled AIMSAN.
It contains an auxiliary information-aware module (AIM) and sparse cross attention-based graph convolution network (SAN)
The proposed method has competitive performance with the state-of-the-art algorithms but saves 35.74% of GPU memory usage, 42.25% of training time, and 45.51% of validation time on average.
arXiv Detail & Related papers (2023-12-14T15:48:23Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - TAP: A Comprehensive Data Repository for Traffic Accident Prediction in
Road Networks [36.975060335456035]
Existing machine learning approaches tend to focus on predicting traffic accidents in isolation.
To incorporate graph structure information, Graph Neural Networks (GNNs) can be naturally applied.
Applying GNNs to the accident prediction problem faces challenges due to the lack of suitable graph-structured traffic accident datasets.
arXiv Detail & Related papers (2023-04-17T22:18:58Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Detecting Owner-member Relationship with Graph Convolution Network in
Fisheye Camera System [9.665475078766017]
We propose an innovative relationship prediction method, DeepWORD, by designing a graph convolutional network (GCN)
In the experiments we learned that the proposed method achieved state-of-the-art accuracy and real-time performance.
arXiv Detail & Related papers (2022-01-28T13:12:27Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting [11.495992519252585]
We argue that such correlations are universal and play a pivotal role in traffic flow.
We propose a new spacetime interval learning framework that constructs a local-spacetime context of a traffic sensor.
The proposed STNN model can be applied on any unseen traffic networks.
arXiv Detail & Related papers (2021-09-11T09:04:35Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.