A Novel Compact LLM Framework for Local, High-Privacy EHR Data Applications
- URL: http://arxiv.org/abs/2412.02868v1
- Date: Tue, 03 Dec 2024 22:06:55 GMT
- Title: A Novel Compact LLM Framework for Local, High-Privacy EHR Data Applications
- Authors: Yixiang Qu, Yifan Dai, Shilin Yu, Pradham Tanikella, Travis Schrank, Trevor Hackman, Didong Li, Di Wu,
- Abstract summary: This paper presents a compact Large Language Models (LLMs) framework designed for local deployment in settings with strict privacy requirements.
We introduce a novel preprocessing technique that uses information extraction methods, e.g., regular expressions, to filter and emphasize critical information in clinical notes.
Our framework is evaluated using zero-shot and few-shot learning paradigms on both private and publicly available (MIMIC-IV) datasets.
- Score: 3.5839042822277585
- License:
- Abstract: Large Language Models (LLMs) have shown impressive capabilities in natural language processing, yet their use in sensitive domains like healthcare, particularly with Electronic Health Records (EHR), faces significant challenges due to privacy concerns and limited computational resources. This paper presents a compact LLM framework designed for local deployment in settings with strict privacy requirements and limited access to high-performance GPUs. We introduce a novel preprocessing technique that uses information extraction methods, e.g., regular expressions, to filter and emphasize critical information in clinical notes, enhancing the performance of smaller LLMs on EHR data. Our framework is evaluated using zero-shot and few-shot learning paradigms on both private and publicly available (MIMIC-IV) datasets, and we also compare its performance with fine-tuned LLMs on the MIMIC-IV dataset. The results demonstrate that our preprocessing approach significantly boosts the prediction accuracy of smaller LLMs, making them suitable for high-privacy, resource-constrained applications. This study offers valuable insights into optimizing LLM performance for sensitive, data-intensive tasks while addressing computational and privacy limitations.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Model-Based Privacy-Preserving Knowledge Transfer for Large Language Models [34.949731264918846]
Llamdex is a framework that enhances large language models (LLMs) using only models trained on domain-specific data.
Our approach significantly enhances the accuracy of domain-specific tasks, achieving up to a 26% accuracy improvement.
arXiv Detail & Related papers (2024-10-14T13:18:20Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis.
Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs.
Our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs.
arXiv Detail & Related papers (2024-08-23T01:37:29Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Federated Domain-Specific Knowledge Transfer on Large Language Models Using Synthetic Data [53.70870879858533]
We introduce a Federated Domain-specific Knowledge Transfer framework.
It enables domain-specific knowledge transfer from LLMs to SLMs while preserving clients' data privacy.
The proposed FDKT framework consistently and greatly improves SLMs' task performance by around 5% with a privacy budget of less than 10.
arXiv Detail & Related papers (2024-05-23T06:14:35Z) - Developing Healthcare Language Model Embedding Spaces [0.20971479389679337]
Pre-trained Large Language Models (LLMs) often struggle on out-of-domain datasets like healthcare focused text.
Three methods are assessed: traditional masked language modeling, Deep Contrastive Learning for Unsupervised Textual Representations (DeCLUTR) and a novel pre-training objective utilizing metadata categories from the healthcare settings.
Contrastively trained models outperform other approaches on the classification tasks, delivering strong performance from limited labeled data and with fewer model parameter updates required.
arXiv Detail & Related papers (2024-03-28T19:31:32Z) - Large Language Models as Data Preprocessors [9.99065004972981]
Large Language Models (LLMs) have marked a significant advancement in artificial intelligence.
This study explores their potential in data preprocessing, a critical stage in data mining and analytics applications.
We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques.
arXiv Detail & Related papers (2023-08-30T23:28:43Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models [11.845239346943067]
parameter-efficient fine-tuning (PEFT) is a promising approach to efficiently specialize large language models (LLMs) to task-specific data.
Our study highlights the potential for tuning larger LLMs and significant reductions in memory usage by combining PEFT with quantization.
arXiv Detail & Related papers (2023-08-21T04:31:06Z) - Improving Small Language Models on PubMedQA via Generative Data
Augmentation [4.96649519549027]
Large Language Models (LLMs) have made remarkable advancements in the field of natural language processing.
Small Language Models (SLMs) are known for their efficiency, but they often struggle with limited capacity and training data.
We introduce a novel method aimed at improving SLMs in the medical domain using LLM-based generative data augmentation.
arXiv Detail & Related papers (2023-05-12T23:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.