論文の概要: MLD-EA: Check and Complete Narrative Coherence by Introducing Emotions and Actions
- arxiv url: http://arxiv.org/abs/2412.02897v1
- Date: Tue, 03 Dec 2024 23:01:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:09:57.370242
- Title: MLD-EA: Check and Complete Narrative Coherence by Introducing Emotions and Actions
- Title(参考訳): MLD-EA:感情と行動の導入によるコヒーレンスチェックと完全ナラティブ・コヒーレンス
- Authors: Jinming Zhang, Yunfei Long,
- Abstract要約: 感情・行動(MLD-EA)モデルを用いたミス・ロジック・ディテクタを提案する。
物語のギャップを識別し、物語の感情的・論理的流れとシームレスに統合する一貫性のある文を生成する。
この研究はNLP研究のギャップを埋め、より洗練され信頼性の高いストーリージェネレーションシステムを構築するという境界目標を前進させる。
- 参考スコア(独自算出の注目度): 8.06073345741722
- License:
- Abstract: Narrative understanding and story generation are critical challenges in natural language processing (NLP), with much of the existing research focused on summarization and question-answering tasks. While previous studies have explored predicting plot endings and generating extended narratives, they often neglect the logical coherence within stories, leaving a significant gap in the field. To address this, we introduce the Missing Logic Detector by Emotion and Action (MLD-EA) model, which leverages large language models (LLMs) to identify narrative gaps and generate coherent sentences that integrate seamlessly with the story's emotional and logical flow. The experimental results demonstrate that the MLD-EA model enhances narrative understanding and story generation, highlighting LLMs' potential as effective logic checkers in story writing with logical coherence and emotional consistency. This work fills a gap in NLP research and advances border goals of creating more sophisticated and reliable story-generation systems.
- Abstract(参考訳): ナラティブな理解とストーリー生成は自然言語処理(NLP)において重要な課題であり、既存の研究の多くは要約と質問応答に重点を置いている。
以前の研究ではプロットの終わりの予測や物語の延長について検討されてきたが、物語の中の論理的一貫性を無視することが多く、この分野に大きなギャップが残されている。
そこで我々は,大言語モデル(LLM)を利用して物語のギャップを識別し,物語の感情的・論理的流れとシームレスに統合する一貫性のある文を生成するMLD-EAモデルを提案する。
実験結果から,MLD-EAモデルにより物語理解と物語生成が促進され,論理的コヒーレンスと感情的一貫性を備えたストーリー執筆における論理チェッカーとしてのLLMの可能性が強調された。
この研究はNLP研究のギャップを埋め、より洗練され信頼性の高いストーリージェネレーションシステムを構築するという境界目標を前進させる。
関連論文リスト
- Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives [84.03001845263]
神経認知障害(NCD)の早期発見は、時間的介入と疾患管理に不可欠である。
伝統的な物語分析は、しばしば単語の使用法や構文など、ミクロ構造における局所的な指標に焦点を当てる。
本稿では,話題の変化,時間的ダイナミクス,物語の時間的コヒーレンスを分析することによって,特定の認知的・言語的課題を解明することを提案する。
論文 参考訳(メタデータ) (2025-01-07T12:16:26Z) - Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
本研究では,大言語モデル(LLM)の因果推論能力について,物語から因果関係を推定する代表的な問題から検討する。
最新の言語モデルでさえ、物語の提示とパラメトリック知識の両方において、信頼できないショートカットに依存していることがわかった。
論文 参考訳(メタデータ) (2024-10-31T12:48:58Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
本稿では,物語の執筆を特殊エージェントが取り組んだサブタスクに分解する,物語理論に触発された世代フレームワークを提案する。
エージェントの部屋は,専門的評価者が好むストーリーをベースラインシステムより生成することを示す。
論文 参考訳(メタデータ) (2024-10-03T15:44:42Z) - Are Large Language Models Capable of Generating Human-Level Narratives? [114.34140090869175]
本稿ではストーリーテリングにおけるLLMの能力について考察し,物語の展開とプロットの進行に着目した。
本稿では,3つの談話レベルの側面から物語を分析するための新しい計算フレームワークを提案する。
談話機能の明示的な統合は、ニューラルストーリーテリングの40%以上の改善によって示されるように、ストーリーテリングを促進することができることを示す。
論文 参考訳(メタデータ) (2024-07-18T08:02:49Z) - Are NLP Models Good at Tracing Thoughts: An Overview of Narrative
Understanding [21.900015612952146]
物語的理解は、著者の認知過程を捉え、その知識、意図、信念、欲求に関する洞察を提供する。
大きな言語モデル(LLM)は文法的に一貫性のあるテキストを生成するのに優れているが、著者の思考を理解する能力は依然として不明である。
これは物語理解の実践的な応用を妨げる。
論文 参考訳(メタデータ) (2023-10-28T18:47:57Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
自然言語ナラティブで指定されたソフト推論タスクの言語モデルを評価するデータセットである MuSR を紹介する。
このデータセットには2つの重要な特徴がある。まず、ニューロシンボリック合成-自然生成アルゴリズムによって生成される。
第二に、私たちのデータセットインスタンスは、実世界の推論の領域に対応する無料のテキスト物語です。
論文 参考訳(メタデータ) (2023-10-24T17:59:20Z) - M-SENSE: Modeling Narrative Structure in Short Personal Narratives Using
Protagonist's Mental Representations [14.64546899992196]
本研究では,登場人物の心的状態の推測を解析し,物語構造の顕著な要素を自動的に検出するタスクを提案する。
本稿では,物語構造の主要な要素,特にクライマックスと解像度のマニュアルアノテーションを含む,短い個人物語のSTORIESデータセットを紹介する。
我々のモデルは、クライマックスと解像度を識別するタスクにおいて、大幅な改善を達成できる。
論文 参考訳(メタデータ) (2023-02-18T20:48:02Z) - Tension Space Analysis for Emergent Narrative [0.1784936803975635]
本稿では,可能世界のナラトロジー理論を用いた創発的物語への新たなアプローチを提案する。
本研究では,このようなシステムにおける作業設計を,表現的範囲分析に触発された形式的解析手法を用いて理解する方法を実証する。
最後に、スケッチベースのインタフェースを用いて、創発的な物語システムのために、コンテンツを作成できる新しい方法を提案する。
論文 参考訳(メタデータ) (2020-04-22T19:26:09Z) - A Knowledge-Enhanced Pretraining Model for Commonsense Story Generation [98.25464306634758]
本稿では,外部知識ベースからのコモンセンス知識を利用して,合理的なストーリーを生成することを提案する。
我々は,真と偽のストーリーを識別するための差別的目的を組み合わせたマルチタスク学習を採用している。
我々のモデルは、特に論理学とグローバルコヒーレンスの観点から、最先端のベースラインよりも合理的なストーリーを生成することができる。
論文 参考訳(メタデータ) (2020-01-15T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。