TOOL-ED: Enhancing Empathetic Response Generation with the Tool Calling Capability of LLM
- URL: http://arxiv.org/abs/2412.03096v2
- Date: Sun, 08 Dec 2024 14:14:25 GMT
- Title: TOOL-ED: Enhancing Empathetic Response Generation with the Tool Calling Capability of LLM
- Authors: Huiying Cao, Yiqun Zhang, Shi Feng, Xiaocui Yang, Daling Wang, Yifei Zhang,
- Abstract summary: Empathetic conversation is a crucial characteristic in daily conversations between individuals.<n>Large Language models (LLMs) have shown outstanding performance in generating empathetic responses.<n>We propose Emotional Knowledge Tool Calling (EKTC) framework, which encapsulates the commonsense knowledge bases as empathetic tools.
- Score: 20.86734842842532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Empathetic conversation is a crucial characteristic in daily conversations between individuals. Nowadays, Large Language models (LLMs) have shown outstanding performance in generating empathetic responses. Knowledge bases like COMET can assist LLMs in mitigating illusions and enhancing the understanding of users' intentions and emotions. However, models remain heavily reliant on fixed knowledge bases and unrestricted incorporation of external knowledge can introduce noise. Tool learning is a flexible end-to-end approach that assists LLMs in handling complex problems. In this paper, we propose Emotional Knowledge Tool Calling (EKTC) framework, which encapsulates the commonsense knowledge bases as empathetic tools, enabling LLMs to integrate external knowledge flexibly through tool calling. In order to adapt the models to the new task, we construct a novel dataset TOOL-ED based on the EMPATHETICMPATHETIC DIALOGUE (ED) dataset. We validate EKTC on the ED dataset, and the experimental results demonstrate that our framework can enhance the ability of LLMs to generate empathetic responses effectively.
Related papers
- MEKiT: Multi-source Heterogeneous Knowledge Injection Method via Instruction Tuning for Emotion-Cause Pair Extraction [20.87441685258155]
MEKiT integrates internal emotional knowledge and external causal knowledge.<n> Experimental results demonstrate that MEKiT provides a more effective and adaptable solution for the ECPE task.
arXiv Detail & Related papers (2025-07-20T10:11:21Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - LLM With Tools: A Survey [0.0]
This paper delves into the methodology,challenges, and developments in the realm of teaching LLMs to use external tools.
We introduce a standardized paradigm for tool integration guided by a series of functions that map user instructions to actionable plans.
Our exploration reveals the various challenges encountered, such as tool invocation timing, selection accuracy, and the need for robust reasoning processes.
arXiv Detail & Related papers (2024-09-24T14:08:11Z) - Learning to Ask: When LLMs Meet Unclear Instruction [49.256630152684764]
Large language models (LLMs) can leverage external tools for addressing a range of tasks unattainable through language skills alone.
We evaluate the performance of LLMs tool-use under imperfect instructions, analyze the error patterns, and build a challenging tool-use benchmark called Noisy ToolBench.
We propose a novel framework, Ask-when-Needed (AwN), which prompts LLMs to ask questions to users whenever they encounter obstacles due to unclear instructions.
arXiv Detail & Related papers (2024-08-31T23:06:12Z) - Tool Learning in the Wild: Empowering Language Models as Automatic Tool Agents [56.822238860147024]
Augmenting large language models with external tools has emerged as a promising approach to extend their utility.
Previous methods manually parse tool documentation and create in-context demonstrations, transforming tools into structured formats for LLMs to use in their step-by-step reasoning.
We propose AutoTools, a framework that enables LLMs to automate the tool-use workflow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - AGILE: A Novel Reinforcement Learning Framework of LLM Agents [7.982249117182315]
We introduce a novel reinforcement learning framework of LLM agents designed to perform complex conversational tasks with users.
The agent possesses capabilities beyond conversation, including reflection, tool usage, and expert consultation.
Our experiments show that AGILE agents based on 7B and 13B LLMs trained with PPO can outperform GPT-4 agents.
arXiv Detail & Related papers (2024-05-23T16:17:44Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
We propose a decision-aware and generalizable tool-usage framework (DEER)
Specifically, we first construct the tool-usage samples with multiple decision branches via an automatic generation pipeline.
Our proposed DEER is effective and significantly outperforms baselines across various datasets.
arXiv Detail & Related papers (2024-02-26T16:11:03Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - ToolQA: A Dataset for LLM Question Answering with External Tools [14.408707186450899]
Large Language Models (LLMs) have demonstrated impressive performance in various NLP tasks.
They still suffer from challenges such as hallucination and weak numerical reasoning.
To overcome these challenges, external tools can be used to enhance LLMs' question-answering abilities.
arXiv Detail & Related papers (2023-06-23T05:43:28Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
Large Language Models (LLMs) have made significant progress in utilizing tools, but their ability is limited by API availability.
We propose CREATOR, a novel framework that enables LLMs to create their own tools using documentation and code realization.
We evaluate CREATOR on MATH and TabMWP benchmarks, respectively consisting of challenging math competition problems.
arXiv Detail & Related papers (2023-05-23T17:51:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.