論文の概要: S3O: A Dual-Phase Approach for Reconstructing Dynamic Shape and Skeleton of Articulated Objects from Single Monocular Video
- arxiv url: http://arxiv.org/abs/2405.12607v1
- Date: Tue, 21 May 2024 09:01:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:58:57.155696
- Title: S3O: A Dual-Phase Approach for Reconstructing Dynamic Shape and Skeleton of Articulated Objects from Single Monocular Video
- Title(参考訳): S3O:単眼ビデオによる人工物体の動的形状と骨格再構築のための2相アプローチ
- Authors: Hao Zhang, Fang Li, Samyak Rawlekar, Narendra Ahuja,
- Abstract要約: 単一の単眼映像から動的に調音された物体を再構成することは困難であり、限られた視点から形状、動き、カメラパラメータを共同で推定する必要がある。
可視形状や下層の骨格を含むパラメトリックモデルを効率的に学習する新しい2相法であるS3Oを提案する。
標準ベンチマークとPlanetZooデータセットの実験により、S3Oはより正確な3D再構成と可塑性骨格を提供し、最先端技術と比較してトレーニング時間を約60%短縮することを確認した。
- 参考スコア(独自算出の注目度): 13.510513575340106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing dynamic articulated objects from a singular monocular video is challenging, requiring joint estimation of shape, motion, and camera parameters from limited views. Current methods typically demand extensive computational resources and training time, and require additional human annotations such as predefined parametric models, camera poses, and key points, limiting their generalizability. We propose Synergistic Shape and Skeleton Optimization (S3O), a novel two-phase method that forgoes these prerequisites and efficiently learns parametric models including visible shapes and underlying skeletons. Conventional strategies typically learn all parameters simultaneously, leading to interdependencies where a single incorrect prediction can result in significant errors. In contrast, S3O adopts a phased approach: it first focuses on learning coarse parametric models, then progresses to motion learning and detail addition. This method substantially lowers computational complexity and enhances robustness in reconstruction from limited viewpoints, all without requiring additional annotations. To address the current inadequacies in 3D reconstruction from monocular video benchmarks, we collected the PlanetZoo dataset. Our experimental evaluations on standard benchmarks and the PlanetZoo dataset affirm that S3O provides more accurate 3D reconstruction, and plausible skeletons, and reduces the training time by approximately 60% compared to the state-of-the-art, thus advancing the state of the art in dynamic object reconstruction.
- Abstract(参考訳): 単一の単眼ビデオから動的に調音された物体を再構成することは困難であり、限られた視点から形状、動き、カメラパラメータを共同で推定する必要がある。
現在の手法は通常、広範な計算資源とトレーニング時間を必要とし、事前定義されたパラメトリックモデル、カメラポーズ、キーポイントなどの追加の人間のアノテーションを必要とし、一般化性を制限する。
本稿では,これらの前提条件を強制し,可視形状や下層の骨格を含むパラメトリックモデルを効率的に学習する新しい2相法であるS3Oを提案する。
従来の戦略では、すべてのパラメータを同時に学習し、単一の誤った予測が重大なエラーを引き起こすような相互依存に繋がる。
対照的に、S3Oは段階的なアプローチを採用しており、まず粗いパラメトリックモデルを学習し、次に動きの学習と詳細な追加に進む。
この手法は計算複雑性を大幅に減らし、限定的な視点から再構築の堅牢性を高める。
モノクロビデオベンチマークによる3次元再構成における現在の不整合に対処するため,PlanetZooデータセットを収集した。
標準ベンチマークとPlanetZooデータセットの実験により、S3Oはより正確な3D再構成と可塑性骨格を提供し、トレーニング時間を最先端と比較して約60%短縮し、動的オブジェクト再構成における最先端の進歩を図った。
関連論文リスト
- Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis [25.898616784744377]
観察されたビューの少ないセットを考えると、その観察は完全な正確な3Dを得るのに十分な直接的な証拠を与えていないかもしれない。
a) 新規なビュー合成に基づく生成先行を光度目標と組み合わせて、推定された3Dの質を向上させる方法、(b) アウトレーヤを明示的に推論し、連続最適化に基づく戦略による離散探索を用いて補正する手法であるSparseAGSを提案する。
論文 参考訳(メタデータ) (2024-12-04T18:59:24Z) - MultiGO: Towards Multi-level Geometry Learning for Monocular 3D Textured Human Reconstruction [4.457326808146675]
本稿では, 単眼画像から3次元布体を再構築する研究課題について検討する。
既存のアプローチでは、事前訓練されたSMPL(-X)推定モデルや生成モデルを利用して、人間の再構築に補助情報を提供する。
技術的には,骨格レベルの強化,関節レベルの強化,輪郭レベルの改良モジュールの3つの重要なコンポーネントを設計する。
論文 参考訳(メタデータ) (2024-12-04T08:06:06Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
我々は動的シーンから時間ステップごとの幾何を直接推定する新しい幾何学的アプローチであるMotion DUSt3R(MonST3R)を提案する。
各タイムステップのポイントマップを単純に推定することで、静的シーンにのみ使用されるDUST3Rの表現を動的シーンに効果的に適応させることができる。
我々は、問題を微調整タスクとしてポーズし、いくつかの適切なデータセットを特定し、この制限されたデータ上でモデルを戦略的に訓練することで、驚くほどモデルを動的に扱えることを示す。
論文 参考訳(メタデータ) (2024-10-04T18:00:07Z) - TFS-NeRF: Template-Free NeRF for Semantic 3D Reconstruction of Dynamic Scene [25.164085646259856]
本稿では,スパースやシングルビューRGBビデオから撮影したダイナミックシーンのためのテンプレートレス3DセマンティックNeRFを提案する。
相互作用する物体の動きを遠ざけ, 濃度ごとのスキン厚みを最適化することにより, 高精度でセマンティックに分離可能なジオメトリを効率的に生成する。
論文 参考訳(メタデータ) (2024-09-26T01:34:42Z) - REACTO: Reconstructing Articulated Objects from a Single Video [64.89760223391573]
関節の柔軟な変形を維持しつつ各部の剛性を向上する新しい変形モデルを提案する。
提案手法は, 従来よりも高忠実度な3D再構成を実現する上で, 従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-17T08:01:55Z) - Enhanced Spatio-Temporal Context for Temporally Consistent Robust 3D
Human Motion Recovery from Monocular Videos [5.258814754543826]
本稿では,モノクロ映像からの時間的一貫した動き推定手法を提案する。
汎用的なResNetのような機能を使う代わりに、本手法ではボディ認識機能表現と独立したフレーム単位のポーズを使用する。
提案手法は, 高速化誤差を著しく低減し, 既存の最先端手法よりも優れる。
論文 参考訳(メタデータ) (2023-11-20T10:53:59Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
本研究では,人間のポーズの変形をモデル化し,それに伴う拡散に基づく動きを事前に設計する手法を提案する。
動作中の3次元人間の骨格を復元する作業は3次元基準骨格の推定に分割する。
混合時空間NASfMformerを用いて、各フレームの3次元基準骨格と骨格変形を2次元観測シーケンスから同時に推定する。
論文 参考訳(メタデータ) (2023-08-18T16:41:57Z) - SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes [75.9110646062442]
我々はSceNeRFlowを提案し、時間的一貫性のある方法で一般的な非剛体シーンを再構築する。
提案手法は,カメラパラメータを入力として,静止カメラからのマルチビューRGBビデオと背景画像を取得する。
実験により,小規模動作のみを扱う先行作業とは異なり,スタジオスケール動作の再構築が可能であることが示された。
論文 参考訳(メタデータ) (2023-08-16T09:50:35Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
本稿では,3次元シーンの多様な特徴パターンを捉えるニューラルシーン合成手法を提案する。
提案手法は,ニューラルネットワークと従来のシーン合成手法の双方の長所を結合する。
論文 参考訳(メタデータ) (2021-08-30T19:45:07Z) - A-NeRF: Surface-free Human 3D Pose Refinement via Neural Rendering [13.219688351773422]
本稿では,自己教師型でユーザの体積体モデルを学習する単眼モーションキャプチャのためのテスト時間最適化手法を提案する。
我々のアプローチは自己監督的であり、外観、ポーズ、および3D形状のための追加の真実ラベルを必要としない。
本研究では, 識別的ポーズ推定手法と表面自由解析-合成による識別的ポーズ推定手法の組み合わせが, 純粋に識別的ポーズ推定手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-02-11T18:58:31Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
本研究では,パラメトリックボディモデルと自由形深部暗黙関数を組み合わせたパラメトリックモデル記述型暗黙表現(PaMIR)を提案する。
本手法は, 挑戦的なポーズや衣料品のタイプにおいて, 画像に基づく3次元再構築のための最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-08T02:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。