論文の概要: Self-test loss functions for learning weak-form operators and gradient flows
- arxiv url: http://arxiv.org/abs/2412.03506v1
- Date: Wed, 04 Dec 2024 17:48:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:09:48.856190
- Title: Self-test loss functions for learning weak-form operators and gradient flows
- Title(参考訳): 弱形式作用素と勾配流の学習のための自己テスト損失関数
- Authors: Yuan Gao, Quanjun Lang, Fei Lu,
- Abstract要約: 未知のパラメータに依存するテスト関数を用いる自己テスト損失関数を導入する。
提案した自己テスト損失関数はエネルギー勾配を保存し、微分方程式の対数類似比と一致する。
- 参考スコア(独自算出の注目度): 5.9739929525316064
- License:
- Abstract: The construction of loss functions presents a major challenge in data-driven modeling involving weak-form operators in PDEs and gradient flows, particularly due to the need to select test functions appropriately. We address this challenge by introducing self-test loss functions, which employ test functions that depend on the unknown parameters, specifically for cases where the operator depends linearly on the unknowns. The proposed self-test loss function conserves energy for gradient flows and coincides with the expected log-likelihood ratio for stochastic differential equations. Importantly, it is quadratic, facilitating theoretical analysis of identifiability and well-posedness of the inverse problem, while also leading to efficient parametric or nonparametric regression algorithms. It is computationally simple, requiring only low-order derivatives or even being entirely derivative-free, and numerical experiments demonstrate its robustness against noisy and discrete data.
- Abstract(参考訳): 損失関数の構成は、PDEにおける弱い形式演算子と勾配流を含むデータ駆動モデリングにおいて大きな課題となる。
本稿では,未知パラメータに依存するテスト関数,特に演算子が未知パラメータに線形に依存する場合の自己テスト損失関数を導入することで,この問題に対処する。
提案した自己テスト損失関数は勾配流のエネルギーを保存し、確率微分方程式の対数類似比と一致する。
重要なことに、これは二次的であり、逆問題における識別可能性と適切な仮定の理論的解析を容易にし、また効果的なパラメトリック回帰アルゴリズムや非パラメトリック回帰アルゴリズムをもたらす。
これは計算学的に単純であり、低次微分のみを必要とするか、完全に微分自由であるかさえ必要であり、数値実験はノイズや離散データに対する頑健さを実証する。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
我々は,物理軌道残差学習(DeltaPhi)を提案し,定式化する。
既存のニューラル演算子ネットワークに基づく残差演算子マッピングのサロゲートモデルについて学習する。
直接学習と比較して,PDEの解法には物理残差学習が望ましいと結論づける。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - AnyLoss: Transforming Classification Metrics into Loss Functions [21.34290540936501]
評価指標は、バイナリ分類タスクにおけるモデルの性能を評価するために使用することができる。
ほとんどのメトリクスは、非微分可能形式の混乱行列から派生しており、直接最適化できる微分可能損失関数を生成することは困難である。
本稿では,任意の混乱行列に基づく計量を,最適化プロセスで利用可能な損失関数 textitAnyLoss に変換する汎用的アプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:14:16Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
多次元関数データのサンプルから連続表現を学習するためのフレームワークを提案する。
本研究では, テンソル分解により, 得られた推定問題を効率的に解けることを示す。
我々は、ニューロイメージングにおける真のデータ応用で締めくくっている。
論文 参考訳(メタデータ) (2021-07-30T16:02:15Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
同じ良い線形モデルから非負関数に対する最初のモデルを提供する。
我々は、それが表現定理を認め、凸問題に対する効率的な二重定式化を提供することを証明した。
論文 参考訳(メタデータ) (2020-07-08T07:17:28Z) - Online stochastic gradient descent on non-convex losses from
high-dimensional inference [2.2344764434954256]
勾配降下(SGD)は高次元タスクにおける最適化問題に対する一般的なアルゴリズムである。
本稿では,データから非自明な相関関係を推定する。
本稿では、位相探索や一般化モデルの推定といった一連のタスクに適用することで、我々のアプローチを説明する。
論文 参考訳(メタデータ) (2020-03-23T17:34:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。