論文の概要: Learning Speed-Adaptive Walking Agent Using Imitation Learning with Physics-Informed Simulation
- arxiv url: http://arxiv.org/abs/2412.03949v1
- Date: Thu, 05 Dec 2024 07:55:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 20:43:01.949512
- Title: Learning Speed-Adaptive Walking Agent Using Imitation Learning with Physics-Informed Simulation
- Title(参考訳): 物理インフォームドシミュレーションを用いた模倣学習を用いた学習速度適応型歩行エージェント
- Authors: Yi-Hung Chiu, Ung Hee Lee, Changseob Song, Manaen Hu, Inseung Kang,
- Abstract要約: 生体力学的に現実的な動作を維持しつつ、様々な歩行速度に適応できる骨格型ヒューマノイド剤を開発した。
このフレームワークは、オープンソースのバイオメカニクスデータから生体力学的に妥当な歩行運動を生産する合成データジェネレータと、エージェントの歩行ポリシーを訓練するために逆模倣学習を使用する訓練システムとを組み合わせる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Virtual models of human gait, or digital twins, offer a promising solution for studying mobility without the need for labor-intensive data collection. However, challenges such as the sim-to-real gap and limited adaptability to diverse walking conditions persist. To address these, we developed and validated a framework to create a skeletal humanoid agent capable of adapting to varying walking speeds while maintaining biomechanically realistic motions. The framework combines a synthetic data generator, which produces biomechanically plausible gait kinematics from open-source biomechanics data, and a training system that uses adversarial imitation learning to train the agent's walking policy. We conducted comprehensive analyses comparing the agent's kinematics, synthetic data, and the original biomechanics dataset. The agent achieved a root mean square error of 5.24 +- 0.09 degrees at varying speeds compared to ground-truth kinematics data, demonstrating its adaptability. This work represents a significant step toward developing a digital twin of human locomotion, with potential applications in biomechanics research, exoskeleton design, and rehabilitation.
- Abstract(参考訳): 人間の歩行の仮想モデル(デジタルツイン)は、労働集約的なデータ収集を必要とせずに、モビリティを研究するための有望なソリューションを提供する。
しかし、シム・トゥ・リアルギャップや多様な歩行条件への適応性の制限といった課題は継続する。
そこで本研究では,生体力学的な動作を維持しつつ,歩行速度に適応できる骨格型ヒューマノイド剤の開発と評価を行った。
このフレームワークは、オープンソースのバイオメカニクスデータから生体力学的に妥当な歩行運動を生産する合成データジェネレータと、エージェントの歩行ポリシーを訓練するために逆模倣学習を使用する訓練システムとを組み合わせる。
本研究は, エージェントの運動学, 合成データ, および元のバイオメカニクスデータセットを総合的に分析した。
このエージェントは、接地トルース運動学データと比較して、異なる速度で5.24 +- 0.09 の根平均二乗誤差を達成し、その適応性を示した。
この研究は、生体力学研究、外骨格設計、リハビリテーションに潜在する、人間の移動のデジタル双生児を開発するための重要なステップである。
関連論文リスト
- K2MUSE: A human lower limb multimodal dataset under diverse conditions for facilitating rehabilitation robotics [15.245241949892584]
K2MUSEデータセットには、運動、運動、振幅モード超音波(AUS)、表面筋電図(sEMG)の測定を含む、総合的なマルチモーダルデータの収集が含まれている。
このデータセットは、リハビリテーションロボットの制御フレームワークを設計し、下肢運動の生体力学的解析を行うための新しいリソースを提供する。
論文 参考訳(メタデータ) (2025-04-20T13:03:56Z) - Reinforcement learning-based motion imitation for physiologically plausible musculoskeletal motor control [47.423243831156285]
筋運動制御の理解を深めるために,モデルフリー運動模倣フレームワーク(KINESIS)を提案する。
我々は,KINESISが1.9時間のモーションキャプチャデータに対して強い模倣性能を達成できることを実証した。
キネシスはヒトの筋活動とよく相関する筋活動パターンを生成する。
論文 参考訳(メタデータ) (2025-03-18T18:37:49Z) - Spatial-Temporal Graph Diffusion Policy with Kinematic Modeling for Bimanual Robotic Manipulation [88.83749146867665]
既存のアプローチは、遠く離れた次のベストなエンドエフェクタのポーズを予測するポリシーを学びます。
すると、運動に対する対応する関節回転角を逆運動学を用いて計算する。
本稿では,Kinematics 拡張空間テンポアル gRaph diffuser を提案する。
論文 参考訳(メタデータ) (2025-03-13T17:48:35Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
筋骨格系と学習可能なパラメトリックハンドモデルMANOを統合し,MS-MANOを作成する。
このモデルは骨格系を駆動する筋肉と腱の力学をエミュレートし、結果として生じるトルク軌跡に生理学的に現実的な制約を与える。
また,マルチ層パーセプトロンネットワークによる初期推定ポーズを改良する,ループ式ポーズ改善フレームワークBioPRを提案する。
論文 参考訳(メタデータ) (2024-04-16T02:18:18Z) - 3D Kinematics Estimation from Video with a Biomechanical Model and
Synthetic Training Data [4.130944152992895]
2つの入力ビューから3Dキネマティクスを直接出力するバイオメカニクス対応ネットワークを提案する。
実験により, 提案手法は, 合成データにのみ訓練されたものであり, 従来の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-02-20T17:33:40Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
現代の深層学習に基づく運動合成アプローチは、合成された運動の物理的妥当性をほとんど考慮していない。
テスト時に物理指向の動作補正を行うシステムSkeleton2Humanoid'を提案する。
挑戦的なLaFAN1データセットの実験は、物理的妥当性と精度の両方の観点から、我々のシステムが先行手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2022-10-09T16:15:34Z) - OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical
Locomotion [8.849771760994273]
MuJoCoシミュレータに基づくオストリッチの3次元筋骨格シミュレーションを作成した。
このモデルは、実際の筋肉データを集めるために使用されるCTスキャンと解剖に基づいている。
また,レファレンス・モーション・トラッキングや,ネック付きリーチ・タスクなど,一連の強化学習タスクも提供する。
論文 参考訳(メタデータ) (2021-12-11T19:58:11Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
インタラクティブで具体化された視覚AIの研究を民主化するためにRoboTHORを導入する。
シミュレーションで訓練されたモデルの性能は,シミュレーションと慎重に構築された物理アナログの両方で試験される場合,大きな差があることが示される。
論文 参考訳(メタデータ) (2020-04-14T20:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。