論文の概要: HyperFLINT: Hypernetwork-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization
- arxiv url: http://arxiv.org/abs/2412.04095v1
- Date: Thu, 05 Dec 2024 12:01:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:41.862231
- Title: HyperFLINT: Hypernetwork-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization
- Title(参考訳): HyperFLINT:科学エンサンブル可視化のためのハイパーネットワークベースフロー推定と時間補間
- Authors: Hamid Gadirov, Qi Wu, David Bauer, Kwan-Liu Ma, Jos Roerdink, Steffen Frey,
- Abstract要約: HyperFLINTは、流れ場を推定し、時間的に補間し、アンサンブルデータにおけるパラメータ空間探索を容易にする、新しいディープラーニングベースのアプローチである。
一連の実験では、HyperFLINTのフロー場推定性能が大幅に向上し、パラメータ空間探索が可能になった。
- 参考スコア(独自算出の注目度): 26.472939569860607
- License:
- Abstract: We present HyperFLINT (Hypernetwork-based FLow estimation and temporal INTerpolation), a novel deep learning-based approach for estimating flow fields, temporally interpolating scalar fields, and facilitating parameter space exploration in spatio-temporal scientific ensemble data. This work addresses the critical need to explicitly incorporate ensemble parameters into the learning process, as traditional methods often neglect these, limiting their ability to adapt to diverse simulation settings and provide meaningful insights into the data dynamics. HyperFLINT introduces a hypernetwork to account for simulation parameters, enabling it to generate accurate interpolations and flow fields for each timestep by dynamically adapting to varying conditions, thereby outperforming existing parameter-agnostic approaches. The architecture features modular neural blocks with convolutional and deconvolutional layers, supported by a hypernetwork that generates weights for the main network, allowing the model to better capture intricate simulation dynamics. A series of experiments demonstrates HyperFLINT's significantly improved performance in flow field estimation and temporal interpolation, as well as its potential in enabling parameter space exploration, offering valuable insights into complex scientific ensembles.
- Abstract(参考訳): 提案するHyperFLINT(Hypernetwork-based FLow Estimation and temporal INTerpolation)は,流れ場を推定し,スカラー場を時間的に補間し,時空間でのパラメータ空間探索を容易にする,新しいディープラーニングベースのアプローチである。
この研究は、学習プロセスにアンサンブルパラメータを明示的に組み込む必要性に対処する。従来の手法はしばしばこれらを無視し、多様なシミュレーション設定に適応し、データダイナミクスに意味のある洞察を提供する能力を制限する。
HyperFLINTは、シミュレーションパラメータを考慮に入れたハイパーネットワークを導入し、様々な条件に動的に適応することで、各タイムステップの正確な補間とフローフィールドを生成することができ、既存のパラメータに依存しないアプローチよりも優れている。
アーキテクチャは、畳み込み層と非畳み込み層を備えたモジュラーニューラルネットワークブロックを備え、メインネットワークの重みを生成するハイパーネットワークによってサポートされ、複雑なシミュレーションのダイナミクスをよりよくキャプチャすることができる。
一連の実験により、HyperFLINTは流れ場の推定と時間的補間における性能を著しく改善し、パラメータ空間探索を可能にする可能性を示し、複雑な科学的アンサンブルに関する貴重な洞察を提供する。
関連論文リスト
- Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
時間的要因間の複雑な相互作用により、バックボーン・時間的トラフィックフローを予測することが課題となる。
既存のアプローチでは、これらの次元を分離し、重要な相互依存を無視している。
本稿では,空間的および時間的依存関係の両方をキャプチャする統合フレームワークであるSanonymous-Temporal Unitized Unitized Cell (ASTUC)を紹介する。
論文 参考訳(メタデータ) (2024-11-14T07:34:31Z) - Accelerate Neural Subspace-Based Reduced-Order Solver of Deformable Simulation by Lipschitz Optimization [9.364019847856714]
高DOFで物理シミュレーションを高速化する新しい手法として,低次シミュレーションがある。
本稿では,最適化された部分空間マッピングの探索手法を提案する。
準静的シミュレーションと動的シミュレーションの両方において,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-09-05T12:56:03Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Predicting the temporal dynamics of turbulent channels through deep
learning [0.0]
最小乱流チャネル流の時間的進化を再現するニューラルネットワークの能力を評価することを目的としている。
長期記憶(LSTM)ネットワークとクープマンベースのフレームワーク(KNF)は、最小チャネルフローモードの時間ダイナミクスを予測するために訓練される。
論文 参考訳(メタデータ) (2022-03-02T09:31:03Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
速度場データの不均一および動的パターンを学習するモデルを開発した。
複雑な多車間相互作用のNGSIMデータセットに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-02-15T17:45:46Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Spatio-Temporal Functional Neural Networks [11.73856529960872]
本稿では,多くの研究者によって有効性が証明された時間回帰モデルであるニューラル・ファンクショナル・ネットワーク(FNN)の2つの新しい拡張を提案する。
提案したモデルは気象分野における実用的で挑戦的な降水予測問題を解決するために展開される。
論文 参考訳(メタデータ) (2020-09-11T21:32:35Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。