論文の概要: Knowledge-Based Deep Learning for Time-Efficient Inverse Dynamics
- arxiv url: http://arxiv.org/abs/2412.05403v1
- Date: Fri, 06 Dec 2024 20:12:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:52:22.441054
- Title: Knowledge-Based Deep Learning for Time-Efficient Inverse Dynamics
- Title(参考訳): 時間効率逆ダイナミクスのための知識に基づくディープラーニング
- Authors: Shuhao Ma, Yu Cao, Ian D. Robertson, Chaoyang Shi, Jindong Liu, Zhi-Qiang Zhang,
- Abstract要約: 時間効率逆動的解析のための知識に基づくディープラーニングフレームワークを提案する。
BiGRUニューラルネットワークは、時系列データの巧妙なハンドリングのため、我々のモデルのバックボーンとして選択される。
実験結果から、選択したBiGRUアーキテクチャは、特別に設計された損失関数を用いてトレーニングされた場合、他のニューラルネットワークモデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 5.78355428732981
- License:
- Abstract: Accurate understanding of muscle activation and muscle forces plays an essential role in neuro-rehabilitation and musculoskeletal disorder treatments. Computational musculoskeletal modeling has been widely used as a powerful non-invasive tool to estimate them through inverse dynamics using static optimization, but the inherent computational complexity results in time-consuming analysis. In this paper, we propose a knowledge-based deep learning framework for time-efficient inverse dynamic analysis, which can predict muscle activation and muscle forces from joint kinematic data directly while not requiring any label information during model training. The Bidirectional Gated Recurrent Unit (BiGRU) neural network is selected as the backbone of our model due to its proficient handling of time-series data. Prior physical knowledge from forward dynamics and pre-selected inverse dynamics based physiological criteria are integrated into the loss function to guide the training of neural networks. Experimental validations on two datasets, including one benchmark upper limb movement dataset and one self-collected lower limb movement dataset from six healthy subjects, are performed. The experimental results have shown that the selected BiGRU architecture outperforms other neural network models when trained using our specifically designed loss function, which illustrates the effectiveness and robustness of the proposed framework.
- Abstract(参考訳): 筋活動と筋力の正確な理解は、神経リハビリテーションと筋骨格障害の治療において重要な役割を担っている。
計算筋骨格モデリングは静的最適化を用いて逆動力学を通してそれらを推定する強力な非侵襲的ツールとして広く用いられているが、本質的に計算複雑性は時間を要する分析に繋がる。
本稿では,モデルトレーニング中にラベル情報を必要とせず,関節キネマティックデータから筋活動と筋力を直接予測できる,時間効率逆動的解析のための知識ベースディープラーニングフレームワークを提案する。
双方向Gated Recurrent Unit (BiGRU) ニューラルネットワークは時系列データの巧妙なハンドリングにより,我々のモデルのバックボーンとして選択される。
フォワードダイナミクスと選択された逆ダイナミクスに基づく生理的基準から以前の物理知識を損失関数に統合し、ニューラルネットワークのトレーニングを指導する。
健常者6名による1つのベンチマーク上肢運動データセットと1つの自己収集下肢運動データセットを含む2つのデータセットに対する実験的検証を行った。
実験の結果,選択したBiGRUアーキテクチャは,設計した損失関数を用いてトレーニングした場合,他のニューラルネットワークモデルよりも優れており,提案フレームワークの有効性と堅牢性を示している。
関連論文リスト
- Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts [28.340344705437758]
視覚入力から行動出力まで,包括的な視覚的意思決定モデルを実装した。
我々のモデルは人間の行動と密接に一致し、霊長類の神経活動を反映する。
ニューロイメージング・インフォームド・ファインチューニング手法を導入し、モデルに適用し、性能改善を実現した。
論文 参考訳(メタデータ) (2024-09-04T02:38:52Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - The bionic neural network for external simulation of human locomotor
system [2.6311880922890842]
本稿では,筋骨格モデルに基づく物理インフォームド深層学習法を提案し,関節運動と筋力を予測する。
この方法は、被験者固有のMSK生理学的パラメータを効果的に同定することができ、訓練された物理インフォームドフォワード力学は、正確な動きと筋力予測をもたらす。
論文 参考訳(メタデータ) (2023-09-11T23:02:56Z) - A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics [4.878073267556235]
表面筋電図(sEMG)による筋力と関節キネマティクス推定はリアルタイム生体力学的解析に不可欠である。
ディープニューラルネットワーク(DNN)の最近の進歩は、完全に自動化され再現可能な方法で生体力学解析を改善する可能性を示している。
本稿では,筋力と関節キネマティクスのsEMGに基づく新しい物理インフォームドローショット学習法を提案する。
論文 参考訳(メタデータ) (2023-07-08T23:01:12Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - From Motion to Muscle [0.0]
筋活動は, 位置, 速度, 加速度などの運動特徴に基づいて人工的に生成できることを示す。
このモデルは、以前に訓練された運動に対して顕著な精度を達成し、これまで訓練されていない新しい運動に対して非常に高い精度を維持している。
論文 参考訳(メタデータ) (2022-01-27T13:30:17Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Evaluating deep transfer learning for whole-brain cognitive decoding [11.898286908882561]
転送学習(TL)は、少数のサンプルを持つデータセットにおける深層学習(DL)モデルの性能向上に適している。
本稿では,全脳機能型磁気共鳴画像(fMRI)データから認識状態の復号化にDLモデルを適用するためのTLを評価した。
論文 参考訳(メタデータ) (2021-11-01T15:44:49Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。