論文の概要: Boosting quantum annealing performance through direct polynomial unconstrained binary optimization
- arxiv url: http://arxiv.org/abs/2412.04398v2
- Date: Thu, 09 Jan 2025 18:58:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:56:46.715398
- Title: Boosting quantum annealing performance through direct polynomial unconstrained binary optimization
- Title(参考訳): 直多項式非制約二元最適化による量子アニール性能の向上
- Authors: Sebastian Nagies, Kevin T. Geier, Javed Akram, Dimitrios Bantounas, Michael Johanning, Philipp Hauke,
- Abstract要約: 多くの最適化問題は、高次の非制約二項最適化関数の観点からより自然に定式化されている。
PUBOの定式化により,必要量子ビット数の点でかなりの節約が期待できることを示す。
以上の結果から, 量子アニールの資源効率とスイーピング速度を向上させるための有望な経路が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quantum annealing aims at solving optimization problems of practical relevance using quantum computing hardware. Problems of interest are typically formulated in terms of quadratic unconstrained binary optimization (QUBO) Hamiltonians. However, many optimization problems are much more naturally formulated in terms of polynomial unconstrained binary optimization (PUBO) functions of higher order. As we show with various problem examples, leveraging the PUBO formulation can bring considerable savings in terms of required number of qubits. Moreover, in numerical benchmarks for the paradigmatic 3-SAT problem, we find scenarios where the scaling of the minimal gap during the optimization sweep differs significantly, suggesting the possibility of an exponentially faster annealing time when using the PUBO as compared to the QUBO formulation. This advantage persists even when considering the overhead in implementing the higher-order interactions necessary for PUBO cost Hamiltonians. As an interesting side effect, the analysis on minimum energy gaps of different 3-SAT instance generators reveals different degrees of hardness, which will be of interest also for classical benchmark calculations. Our findings show a promising path to improving the resource efficiency and sweeping speed of quantum annealing, important prerequisites when aiming at solving larger optimization problems with relevance to industry.
- Abstract(参考訳): 量子アニーリングは、量子コンピューティングハードウェアを用いて実用関連性の最適化問題を解くことを目的としている。
興味の問題は典型的には2次非制約二元最適化(QUBO)ハミルトニアンによって定式化される。
しかし、多くの最適化問題は高次多項式非制約二元最適化(PUBO)関数の観点からより自然に定式化されている。
様々な問題例で示すように、PUBOの定式化を活用すれば、必要量子ビット数の点でかなりの節約が可能となる。
さらに,パラダイム的3SAT問題に対する数値ベンチマークでは,最適化スイープ時の最小ギャップのスケーリングが著しく異なるシナリオが発見され,PUBOを用いた場合,QUBOの定式化と比較して指数的に高速なアニール時間の可能性が示唆された。
この利点は、PUBOのコスト・ハミルトニアンに必要な高次相互作用の実装のオーバーヘッドを考慮しても持続する。
興味深い副作用として、異なる3SATインスタンスジェネレータの最小エネルギーギャップの解析は、古典的なベンチマーク計算においても興味深い、異なる硬さの度合いを示す。
本研究は, 資源効率の向上と, 量子熱処理の高速化, 産業関連でより大きな最適化問題の解決を目指す上で, 重要な前提条件である, 量子熱処理の高速化への道筋を示すものである。
関連論文リスト
- Gaussian boson sampling for binary optimization [0.0]
本稿では,2値最適化問題に対処するために,しきい値検出器を備えたパラメトリゼーションガウスボソンサンプリング(GBS)を提案する。
3SATおよびグラフ問題に関する数値実験は、ランダムな推測よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2024-12-19T12:12:22Z) - Fast Numerical Solver of Ising Optimization Problems via Pruning and Domain Selection [4.460518115427853]
本稿では,Ising最適化問題に対する高速かつ効率的な解法を提案する。
我々の解法は古典的解法よりも桁違いに高速で、量子インスパイアされたアニールよりも少なくとも2倍高速である。
論文 参考訳(メタデータ) (2023-12-10T09:43:15Z) - Challenges and Opportunities in Quantum Optimization [14.7608536260003]
量子コンピュータの最近の進歩は、ブラトフォース古典シミュレーションを超えるスケールで問題を解決する能力を示している。
計算機科学や物理学全般において、主要な最適化問題に対するアプローチは様々である。
論文 参考訳(メタデータ) (2023-12-04T19:00:44Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
古典学のパフォーマンスを、半ランダム化された一連のタスクで比較する。
量子システムにおける一般に好適な性能とクエリ効率のため、局所ゼロ階数に着目する。
論文 参考訳(メタデータ) (2023-10-14T02:13:26Z) - Evidence that PUBO outperforms QUBO when solving continuous optimization
problems with the QAOA [4.670374869377859]
量子アルゴリズムによる最適化問題の解決における中核的なステップは、問題の定式化である。
近年の研究では、多くの問題を自然の多項式非制約最適化形式でより効率的に解けることが示されている。
適切なベンチマーク関数の評価では、PUBOの定式化は一般により良い結果をもたらすが、キュービットは少ない。
論文 参考訳(メタデータ) (2023-05-05T09:37:48Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
制約のないバイナリ最適化の問題を解決するために,光コヒーレントIsingマシンにヒントを得たアルゴリズムを提案する。
提案アルゴリズムを既存のPUBOアルゴリズムに対してベンチマークし,その優れた性能を観察する。
タンパク質の折り畳み問題や量子化学問題へのアルゴリズムの適用は、PUBO問題による電子構造問題の近似の欠点に光を当てる。
論文 参考訳(メタデータ) (2021-06-24T16:39:31Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。