論文の概要: Artificial intelligence and cybersecurity in banking sector: opportunities and risks
- arxiv url: http://arxiv.org/abs/2412.04495v1
- Date: Thu, 28 Nov 2024 22:09:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-15 08:00:14.613067
- Title: Artificial intelligence and cybersecurity in banking sector: opportunities and risks
- Title(参考訳): 銀行部門における人工知能とサイバーセキュリティ--可能性とリスク
- Authors: Ana Kovacevic, Sonja D. Radenkovic, Dragana Nikolic,
- Abstract要約: 機械学習(ML)により、システムは巨大なデータセットに適応し、学習することができる。
この研究は、悪意のあるユーザーが使用できるAIツールのデュアルユース性を強調している。
この論文は、セキュリティ、信頼、レジリエンス、堅牢性といった重要な特徴を持つ機械学習モデルを開発することの重要性を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rapid advancements in artificial intelligence (AI) have presented new opportunities for enhancing efficiency and economic competitiveness across various industries, espcially in banking. Machine learning (ML), as a subset of artificial intelligence, enables systems to adapt and learn from vast datasets, revolutionizing decision-making processes, fraud detection, and customer service automation. However, these innovations also introduce new challenges, particularly in the realm of cybersecurity. Adversarial attacks, such as data poisoning and evasion attacks, represent critical threats to machine learning models, exploiting vulnerabilities to manipulate outcomes or compromise sensitive information. Furthermore, this study highlights the dual-use nature of AI tools, which can be used by malicious users. To address these challenges, the paper emphasizes the importance of developing machine learning models with key characteristics such as security, trust, resilience and robustness. These features are essential to mitigating risks and ensuring the secure deployment of AI technologies in banking sectors, where the protection of financial data is paramount. The findings underscore the urgent need for enhanced cybersecurity frameworks and continuous improvements in defensive mechanisms. By exploring both opportunities and risks, this paper aims to guide the responsible integration of AI in the banking sector, paving the way for innovation while safeguarding against emerging threats.
- Abstract(参考訳): 人工知能(AI)の急速な進歩は、銀行業において、様々な産業における効率性と経済的競争性を向上する新たな機会をもたらした。
機械学習(ML)は、人工知能のサブセットであり、システムは膨大なデータセットに適応し、学習し、意思決定プロセスの革新、不正検出、顧客サービス自動化を可能にする。
しかし、これらのイノベーションは、特にサイバーセキュリティの領域において、新しい課題ももたらします。
データ中毒や回避攻撃といった敵攻撃は、マシンラーニングモデルに対する重大な脅威を表し、結果の操作や機密情報の漏洩に脆弱性を悪用する。
さらに、この研究は、悪意のあるユーザーが使用できるAIツールのデュアルユース性を強調している。
これらの課題に対処するために、セキュリティ、信頼、レジリエンス、堅牢性といった重要な特徴を持つ機械学習モデルを開発することの重要性を強調した。
これらの機能は、金融データの保護が最重要である銀行セクターにおいて、リスクを軽減し、AI技術の安全な展開を保証するために不可欠である。
この調査結果は、サイバーセキュリティフレームワークの強化と防御メカニズムの継続的な改善の必要性を浮き彫りにした。
この論文は、機会とリスクの両方を探求することにより、銀行セクターにおけるAIの責任ある統合を導くとともに、新興の脅威に対して保護しながら、イノベーションの道を開くことを目的としている。
関連論文リスト
- Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - Considerations Influencing Offense-Defense Dynamics From Artificial Intelligence [0.0]
AIは防御能力を向上するだけでなく、悪意ある搾取と大規模な社会的危害のための道も提示する。
本稿では、AIシステムが主に脅威を生じているか、社会に保護的利益をもたらすかに影響を及ぼす主要な要因をマップし、検証するための分類法を提案する。
論文 参考訳(メタデータ) (2024-12-05T10:05:53Z) - Inherently Interpretable and Uncertainty-Aware Models for Online Learning in Cyber-Security Problems [0.22499166814992438]
サイバーセキュリティにおけるオンライン教師あり学習問題に対する新しいパイプラインを提案する。
当社のアプローチは、予測パフォーマンスと透明性のバランスをとることを目的としています。
この研究は、解釈可能なAIの分野の成長に寄与する。
論文 参考訳(メタデータ) (2024-11-14T12:11:08Z) - Security of and by Generative AI platforms [0.0]
このホワイトペーパーは、生成AI(genAI)プラットフォームを確保し、サイバーセキュリティにgenAIを活用することの2つの重要性を強調している。
genAI技術の普及に伴い、その誤用はデータ漏洩、モデル改ざん、悪意のあるコンテンツ生成など、重大なリスクをもたらす。
ホワイトペーパーでは、genAIシステムに関する堅牢なセキュリティフレームワークの戦略を探求するとともに、高度なサイバー脅威を予測、検出、緩和する組織にgenAIがどのように力を与えるかを説明している。
論文 参考訳(メタデータ) (2024-10-15T15:27:05Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Generative AI in Cybersecurity [0.0]
生成人工知能(GAI)は、データ分析、パターン認識、意思決定プロセスの分野を変える上で重要な役割を担っている。
GAIは急速に進歩し、サイバーセキュリティプロトコルや規制フレームワークの現在のペースを超越している。
この研究は、マルウェア生成におけるGAIの高度な利用に対抗するために、より複雑な防衛戦略を積極的に特定し、開発する組織にとって重要な必要性を強調している。
論文 参考訳(メタデータ) (2024-05-02T19:03:11Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Liability regimes in the age of AI: a use-case driven analysis of the
burden of proof [1.7510020208193926]
人工知能(AI)を利用した新しいテクノロジーは、私たちの社会をより良く、破壊的に変革する可能性を秘めている。
しかし、安全と基本的権利の両方に潜在的なリスクをもたらす、これらの方法論の固有の特性に対する懸念が高まっている。
本稿では,これらの難易度を示す3つのケーススタディと,それらに到達するための方法論について述べる。
論文 参考訳(メタデータ) (2022-11-03T13:55:36Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
我々は、信頼できるAI推論システムの設計、展開、運用にアプローチするための業界調査ビューを提供する。
信頼された実行環境を用いたAIシステムの機会と課題を強調します。
我々は,産業,アカデミック,政府研究者のグローバルな集団的注意を必要とする,さらなる発展の分野を概説する。
論文 参考訳(メタデータ) (2020-08-10T23:05:55Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。