論文の概要: Physics-informed Gaussian Processes as Linear Model Predictive Controller
- arxiv url: http://arxiv.org/abs/2412.04502v1
- Date: Mon, 02 Dec 2024 15:37:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:55:01.670821
- Title: Physics-informed Gaussian Processes as Linear Model Predictive Controller
- Title(参考訳): 線形モデル予測制御系としての物理インフォームドガウス過程
- Authors: Jörn Tebbe, Andreas Besginow, Markus Lange-Hegermann,
- Abstract要約: 追従問題における線形時間不変系を制御する新しいアルゴリズムを提案する。
コントローラはガウス過程(GP)に基づいており、その実現は定数係数を持つ線形常微分方程式の系を満たす。
- 参考スコア(独自算出の注目度): 5.89889361990138
- License:
- Abstract: We introduce a novel algorithm for controlling linear time invariant systems in a tracking problem. The controller is based on a Gaussian Process (GP) whose realizations satisfy a system of linear ordinary differential equations with constant coefficients. Control inputs for tracking are determined by conditioning the prior GP on the setpoints, i.e. control as inference. The resulting Model Predictive Control scheme incorporates pointwise soft constraints by introducing virtual setpoints to the posterior Gaussian process. We show theoretically that our controller satisfies asymptotical stability for the optimal control problem by leveraging general results from Bayesian inference and demonstrate this result in a numerical example.
- Abstract(参考訳): 追従問題における線形時間不変系を制御する新しいアルゴリズムを提案する。
コントローラはガウス過程(GP)に基づいており、その実現は定数係数を持つ線形常微分方程式の系を満たす。
追跡のための制御入力は、前回のGPをセットポイント、すなわち制御を推論として条件付けすることで決定される。
結果として生じるモデル予測制御スキームは、後ガウス過程に仮想集合点を導入することによって、点方向のソフト制約を組み込む。
我々は,ベイズ推定の一般結果を利用して最適制御問題に対する漸近的安定性を満足し,この結果を数値的な例で示す。
関連論文リスト
- Sub-linear Regret in Adaptive Model Predictive Control [56.705978425244496]
本稿では,STT-MPC (Self-Tuning tube-based Model Predictive Control) について述べる。
システム力学を最初に認識したアルゴリズムと比較して,アルゴリズムの後悔を解析する。
論文 参考訳(メタデータ) (2023-10-07T15:07:10Z) - LQGNet: Hybrid Model-Based and Data-Driven Linear Quadratic Stochastic
Control [24.413595920205907]
二次制御は、不確実性のある環境で、力学系のための最適な制御信号を見つけることを扱う。
LQGNetは、部分的に知られた動的操作のためにデータを活用するコントローラである。
LQGNetは、ミスマッチしたSSモデルを克服することで、古典的な制御よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-23T17:59:51Z) - Learning-Based Adaptive Control for Stochastic Linear Systems with Input
Constraints [3.8004168340068336]
そこで本研究では,加法的対象であるスカラー線形系の適応制御のための確実な等価性スキームを提案する。
系が極端に安定であると仮定すると、閉ループ系状態の平均二乗有界性は証明される。
論文 参考訳(メタデータ) (2022-09-15T04:49:06Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Control Occupation Kernel Regression for Nonlinear Control-Affine
Systems [6.308539010172309]
非線形高次制御アフィン力学系の近似を求めるアルゴリズムを提案する。
ヒルベルト空間のベクトル値構造は、ドリフトと制御アフィン系の制御有効成分の同時近似を可能にする。
論文 参考訳(メタデータ) (2021-05-31T21:14:30Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z) - Improper Learning for Non-Stochastic Control [78.65807250350755]
逆方向の摂動, 逆方向に選択された凸損失関数, 部分的に観察された状態を含む, 未知の線形力学系を制御することの問題点を考察する。
このパラメトリゼーションにオンライン降下を適用することで、大規模なクローズドループポリシーに対してサブリニア後悔を実現する新しいコントローラが得られる。
我々の境界は、線形力学コントローラの安定化と競合する非確率的制御設定における最初のものである。
論文 参考訳(メタデータ) (2020-01-25T02:12:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。