論文の概要: Cutting is All You Need: Execution of Large-Scale Quantum Neural Networks on Limited-Qubit Devices
- arxiv url: http://arxiv.org/abs/2412.04844v1
- Date: Fri, 06 Dec 2024 08:29:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:55:20.173285
- Title: Cutting is All You Need: Execution of Large-Scale Quantum Neural Networks on Limited-Qubit Devices
- Title(参考訳): 量子ニューラルネットワークの量子ビットデバイス上での大規模実行
- Authors: Alberto Marchisio, Emman Sychiuco, Muhammad Kashif, Muhammad Shafique,
- Abstract要約: 本研究では,HQNNの量子回路切断手法を提案する。
提案手法は、元の回路の精度を保ち、全てのサブ回路における量子パラメータのトレーニングを支援する。
その結果,量子回路切断は,現在の量子ハードウェア上で量子機械学習(QML)を前進させる上で有望な手法であることが示唆された。
- 参考スコア(独自算出の注目度): 4.2435928520499635
- License:
- Abstract: The rapid advancement in Quantum Computing (QC), particularly through Noisy-Intermediate Scale Quantum (NISQ) devices, has spurred significant interest in Quantum Machine Learning (QML) applications. Despite their potential, fully-quantum QML algorithms remain impractical due to the limitations of current NISQ devices. Hybrid quantum-classical neural networks (HQNNs) have emerged as a viable alternative, leveraging both quantum and classical computations to enhance machine learning capabilities. However, the constrained resources of NISQ devices, particularly the limited number of qubits, pose significant challenges for executing large-scale quantum circuits. This work addresses these current challenges by proposing a novel and practical methodology for quantum circuit cutting of HQNNs, allowing large quantum circuits to be executed on limited-qubit NISQ devices. Our approach not only preserves the accuracy of the original circuits but also supports the training of quantum parameters across all subcircuits, which is crucial for the learning process in HQNNs. We propose a cutting methodology for HQNNs that employs a greedy algorithm for identifying efficient cutting points, and the implementation of trainable subcircuits, all designed to maximize the utility of NISQ devices in HQNNs. The findings suggest that quantum circuit cutting is a promising technique for advancing QML on current quantum hardware, since the cut circuit achieves comparable accuracy and much lower qubit requirements than the original circuit.
- Abstract(参考訳): 量子コンピューティング(QC)の急速な進歩、特にノイズ・中間スケール量子(NISQ)デバイスによって、量子機械学習(QML)アプリケーションに大きな関心が寄せられている。
その可能性にもかかわらず、現在のNISQデバイスの制限のため、完全量子QMLアルゴリズムは実用的ではない。
ハイブリッド量子古典ニューラルネットワーク(HQNN)は、量子計算と古典計算の両方を活用して、機械学習能力を向上させる、実行可能な代替手段として登場した。
しかしながら、NISQデバイスの制約されたリソース、特に量子ビット数の制限は、大規模量子回路を実行する上で大きな課題を提起する。
この研究は、HQNNの量子回路切断の斬新で実践的な方法論を提案することで、これらの課題に対処する。
提案手法は,元の回路の精度を保つだけでなく,HQNNにおける学習プロセスにおいて重要な,すべてのサブ回路における量子パラメータのトレーニングもサポートする。
本稿では,効率的な切断点の同定にグリーディアルゴリズムを用いたHQNNの切断手法と,HQNNにおけるNISQデバイスの有用性を最大化するために設計されたトレーニング可能なサブ回路の実装を提案する。
この結果から,量子回路切断は現行の量子ハードウェア上でQMLを進める上で有望な手法であることが示唆された。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - GSQAS: Graph Self-supervised Quantum Architecture Search [0.18899300124593643]
既存の量子アーキテクチャ探索(QAS)アルゴリズムは、探索プロセス中に多数の量子回路を評価する必要がある。
本稿では,自己教師型学習に基づく予測器を訓練するグラフ自己教師型QASであるGSQASを提案する。
GSQASは最先端の予測器ベースのQASより優れており、ラベル付き回路が少なくて性能が良い。
論文 参考訳(メタデータ) (2023-03-22T08:35:28Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - ScaleQC: A Scalable Framework for Hybrid Computation on Quantum and
Classical Processors [25.18520278107402]
量子処理ユニット(QPU)は、その量子ビットの要求量と品質の要求を満たす必要がある。
量子回路切断技術は、より強力なQPUを実現するために、大きな量子回路を複数の小さなサブ回路に切断して分散する。
われわれのツールはScaleQCと呼ばれ、新しいアルゴリズム技術を開発することでボトルネックに対処する。
論文 参考訳(メタデータ) (2022-07-03T01:44:31Z) - Variational Quantum Algorithms [1.9486734911696273]
量子コンピュータは、大規模量子システムや大規模線形代数問題を解くなどの応用を解くことを約束する。
現在利用可能な量子デバイスには、量子ビット数の制限や回路深さを制限するノイズプロセスなど、深刻な制約がある。
パラメトリズド量子回路のトレーニングに古典的シミュレーションを用いる変分量子アルゴリズム(vqas)は、これらの制約に対処するための主要な戦略として登場した。
論文 参考訳(メタデータ) (2020-12-16T21:00:46Z) - CutQC: Using Small Quantum Computers for Large Quantum Circuit
Evaluations [18.78105450344374]
本稿では,古典コンピュータと量子コンピュータを組み合わせたスケーラブルなハイブリッドコンピューティングアプローチであるCutQCを紹介する。
CutQCは、大きな量子回路を小さなサブ回路に分割し、小さな量子デバイスで実行する。
実システムでは、CutQCは小さなプロトタイプの量子コンピュータを用いて、はるかに高い量子回路評価フィリティを達成する。
論文 参考訳(メタデータ) (2020-12-03T23:52:04Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。