Comprehensive Analysis and Improvements in Pansharpening Using Deep Learning
- URL: http://arxiv.org/abs/2412.04896v1
- Date: Fri, 06 Dec 2024 09:55:37 GMT
- Title: Comprehensive Analysis and Improvements in Pansharpening Using Deep Learning
- Authors: Mahek Kantharia, Neeraj Badal, Zankhana Shah,
- Abstract summary: This paper provides a comprehensive analysis of traditional and deep learning-based pansharpening methods.
We propose enhancements to the PSGAN framework by introducing novel regularization techniques for the generator loss function.
- Score: 0.0
- License:
- Abstract: Pansharpening is a crucial task in remote sensing, enabling the generation of high-resolution multispectral images by fusing low-resolution multispectral data with high-resolution panchromatic images. This paper provides a comprehensive analysis of traditional and deep learning-based pansharpening methods. While state-of-the-art deep learning methods have significantly improved image quality, issues like spectral distortions persist. To address this, we propose enhancements to the PSGAN framework by introducing novel regularization techniques for the generator loss function. Experimental results on images from the Worldview-3 dataset demonstrate that the proposed modifications improve spectral fidelity and achieve superior performance across multiple quantitative metrics while delivering visually superior results.
Related papers
- Multi-scale Frequency Enhancement Network for Blind Image Deblurring [7.198959621445282]
We propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring.
To capture the multi-scale spatial and channel information of blurred images, we introduce a multi-scale feature extraction module (MS-FE) based on depthwise separable convolutions.
We demonstrate that the proposed method achieves superior deblurring performance in both visual quality and objective evaluation metrics.
arXiv Detail & Related papers (2024-11-11T11:49:18Z) - Improving Neural Surface Reconstruction with Feature Priors from Multi-View Image [87.00660347447494]
Recent advancements in Neural Surface Reconstruction (NSR) have significantly improved multi-view reconstruction when coupled with volume rendering.
We propose an investigation into feature-level consistent loss, aiming to harness valuable feature priors from diverse pretext visual tasks.
Our results, analyzed on DTU and EPFL, reveal that feature priors from image matching and multi-view stereo datasets outperform other pretext tasks.
arXiv Detail & Related papers (2024-08-04T16:09:46Z) - Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
Super-resolution algorithms transform one or more sets of low-resolution images captured from the same scene into high-resolution images.
The extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms.
The objective is to recover high-quality, high-resolution images from low-resolution images.
arXiv Detail & Related papers (2024-07-18T06:50:39Z) - Unsupervised Deep Learning-based Pansharpening with Jointly-Enhanced
Spectral and Spatial Fidelity [4.425982186154401]
We propose a new deep learning-based pansharpening model that fully exploits the potential of this approach.
The proposed model features a novel loss function that jointly promotes the spectral and spatial quality of the pansharpened data.
Experiments on a large variety of test images, performed in challenging scenarios, demonstrate that the proposed method compares favorably with the state of the art.
arXiv Detail & Related papers (2023-07-26T17:25:28Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Unsupervised Cycle-consistent Generative Adversarial Networks for
Pan-sharpening [41.68141846006704]
We propose an unsupervised generative adversarial framework that learns from the full-scale images without the ground truths to alleviate this problem.
We extract the modality-specific features from the PAN and MS images with a two-stream generator, perform fusion in the feature domain, and then reconstruct the pan-sharpened images.
Results demonstrate that the proposed method can greatly improve the pan-sharpening performance on the full-scale images.
arXiv Detail & Related papers (2021-09-20T09:43:24Z) - Deep Reparametrization of Multi-Frame Super-Resolution and Denoising [167.42453826365434]
We propose a deep reparametrization of the maximum a posteriori formulation commonly employed in multi-frame image restoration tasks.
Our approach is derived by introducing a learned error metric and a latent representation of the target image.
We validate our approach through comprehensive experiments on burst denoising and burst super-resolution datasets.
arXiv Detail & Related papers (2021-08-18T17:57:02Z) - Pan-sharpening via High-pass Modification Convolutional Neural Network [39.295436779920465]
We propose a novel pan-sharpening convolutional neural network based on a high-pass modification block.
The proposed block is designed to learn the high-pass information, leading to enhance spatial information in each band of the multi-spectral-resolution images.
Experiments demonstrate the superior performance of the proposed method compared to the state-of-the-art pan-sharpening methods.
arXiv Detail & Related papers (2021-05-24T23:39:04Z) - Enhancing Photorealism Enhancement [83.88433283714461]
We present an approach to enhancing the realism of synthetic images using a convolutional network.
We analyze scene layout distributions in commonly used datasets and find that they differ in important ways.
We report substantial gains in stability and realism in comparison to recent image-to-image translation methods.
arXiv Detail & Related papers (2021-05-10T19:00:49Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
Group-based image restoration methods are more effective in gathering the similarity among patches.
For each patch, we find and group the most similar patches within a searching window.
The proposed method is superior to other current state-of-the-art denoising methods in both subjective and objective criterion.
arXiv Detail & Related papers (2020-08-09T15:12:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.