論文の概要: Improving Post-Earthquake Crack Detection using Semi-Synthetic Generated Images
- arxiv url: http://arxiv.org/abs/2412.05042v1
- Date: Fri, 06 Dec 2024 13:48:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:57:26.965456
- Title: Improving Post-Earthquake Crack Detection using Semi-Synthetic Generated Images
- Title(参考訳): 半合成画像を用いた地震後のき裂検出の改善
- Authors: Piercarlo Dondi, Alessio Gullotti, Michele Inchingolo, Ilaria Senaldi, Chiara Casarotti, Luca Lombardi, Marco Piastra,
- Abstract要約: 本研究では,損傷検出システムのトレーニング中にデータ拡張として使用する半合成画像を生成する手法を提案する。
本研究の目的は, ひび割れの画像を生成することであり, 損傷の有意かつ示唆的な形態である。
中心となる概念は、パラメトリックメタアノテーションを使用して、実単語構造の3Dモデルに亀裂を発生させるプロセスを導くことである。
- 参考スコア(独自算出の注目度): 0.9004446310840473
- License:
- Abstract: Following an earthquake, it is vital to quickly evaluate the safety of the impacted areas. Damage detection systems, powered by computer vision and deep learning, can assist experts in this endeavor. However, the lack of extensive, labeled datasets poses a challenge to the development of these systems. In this study, we introduce a technique for generating semi-synthetic images to be used as data augmentation during the training of a damage detection system. We specifically aim to generate images of cracks, which are a prevalent and indicative form of damage. The central concept is to employ parametric meta-annotations to guide the process of generating cracks on 3D models of real-word structures. The governing parameters of these meta-annotations can be adjusted iteratively to yield images that are optimally suited for improving detectors' performance. Comparative evaluations demonstrated that a crack detection system trained with a combination of real and semi-synthetic images outperforms a system trained on real images alone.
- Abstract(参考訳): 地震の後、衝突した地域の安全を迅速に評価することが不可欠である。
コンピュータビジョンとディープラーニングを利用する損傷検知システムは、この取り組みの専門家を支援することができる。
しかし、ラベル付きデータセットの欠如は、これらのシステムの開発に課題をもたらす。
本研究では,損傷検出システムのトレーニング中にデータ拡張として使用される半合成画像を生成する手法を提案する。
具体的には, ひび割れの画像を生成することを目的としている。
中心となる概念は、パラメトリックメタアノテーションを使用して、実単語構造の3Dモデルに亀裂を発生させるプロセスを導くことである。
これらのメタアノテーションの制御パラメータを反復的に調整することで、検出器の性能を向上させるのに最適な画像が得られる。
実画像と半合成画像の組み合わせで学習した亀裂検出システムは,実画像だけで訓練したシステムより優れていた。
関連論文リスト
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - Present and Future Generalization of Synthetic Image Detectors [0.6144680854063939]
この研究は系統的な分析を行い、その洞察を用いて、堅牢な合成画像検出器の訓練のための実践的ガイドラインを開発する。
モデル一般化機能は、実際のデプロイメント条件を含む、さまざまな設定で評価される。
現在の手法は特定のシナリオにおいて優れているが、単一の検出器が普遍的な効果を達成できないことを示す。
論文 参考訳(メタデータ) (2024-09-21T12:46:17Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
本稿では,持続的かつ積極的なディープフェイクトレーニング強化ソリューションを提案する。
我々は、ディープフェイクジェネレータモデルによって導入されたアーティファクトの効果を模倣するオートエンコーダのプールを採用する。
実験の結果,提案するアンサンブル・オートエンコーダに基づくデータ拡張学習手法が一般化の点で改善されていることがわかった。
論文 参考訳(メタデータ) (2024-03-29T19:09:08Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Generalized Deepfakes Detection with Reconstructed-Blended Images and
Multi-scale Feature Reconstruction Network [14.749857283918157]
未確認データセットに対する堅牢な適用性を有するブレンドベース検出手法を提案する。
実験により、この手法により、未知のデータ上でのクロスマニピュレーション検出とクロスデータセット検出の両方のパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2023-12-13T09:49:15Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
対向シーンにおけるセグメンテーションの堅牢性を促進するための認識認識型融合フレームワークを提案する。
我々は,先進の競争相手に比べて15.3% mIOUの利得で,ロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-08-08T01:55:44Z) - CarPatch: A Synthetic Benchmark for Radiance Field Evaluation on Vehicle
Components [77.33782775860028]
車両の新たな総合ベンチマークであるCarPatchを紹介する。
内在カメラパラメータと外在カメラパラメータを付加した画像のセットに加えて、各ビューに対して対応する深度マップとセマンティックセグメンテーションマスクが生成されている。
グローバルとパートベースのメトリクスは、いくつかの最先端技術を評価し、比較し、より良い特徴付けるために定義され、使われてきた。
論文 参考訳(メタデータ) (2023-07-24T11:59:07Z) - High-Fidelity Visual Structural Inspections through Transformers and
Learnable Resizers [2.126862120884775]
無人航空機(UAV)と人工知能の最近の進歩により、視覚検査はより速く、より安全で、より信頼性が高い。
高解像度セグメンテーションは、高い計算メモリ要求のために非常に難しい。
本稿では,グローバルとローカルのセマンティクスのトレードオフを管理することで,異なる検査タスクに適応できるハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-10-21T18:08:26Z) - A comparison of different atmospheric turbulence simulation methods for
image restoration [64.24948495708337]
大気の乱流は、長距離イメージングシステムによって捉えられた画像の品質を悪化させる。
深層学習に基づく大気乱流緩和法が文献で提案されている。
様々な乱流シミュレーション手法が画像復元に与える影響を系統的に評価した。
論文 参考訳(メタデータ) (2022-04-19T16:21:36Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
我々は、プレサスタ衛星画像とポストサスタ衛星画像とをラベル付けしたデータセットを使用して、建物ごとの損傷を評価する。
複数の畳み込みニューラルネットワーク(CNN)をトレーニングし、建物ごとの損傷を評価する。
我々の研究は、人為的気候変動による人道的危機の進行に、計算的に貢献することを目指している。
論文 参考訳(メタデータ) (2022-01-24T16:55:56Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
そこで本研究では,深度推定のためのドメイン適応手法を提案する。
提案する2段階構造は,まず,ラベル付き合成画像を用いた深度推定ネットワークを教師付きで訓練する。
実験の結果,提案手法は実画像上でのネットワーク性能をかなりの差で向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-24T08:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。