Confidence Diagram of Nonparametric Ranking for Uncertainty Assessment in Large Language Models Evaluation
- URL: http://arxiv.org/abs/2412.05506v2
- Date: Mon, 10 Feb 2025 15:26:28 GMT
- Title: Confidence Diagram of Nonparametric Ranking for Uncertainty Assessment in Large Language Models Evaluation
- Authors: Zebin Wang, Yi Han, Ethan X. Fang, Lan Wang, Junwei Lu,
- Abstract summary: Ranking large language models (LLMs) has proven to be an effective tool to improve alignment based on the best-of-$N$ policy.<n>We propose a new inferential framework for hypothesis testing among the ranking for language models.
- Score: 20.022623972491733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the inference for the ranking of large language models (LLMs). Alignment arises as a significant challenge to mitigate hallucinations in the use of LLMs. Ranking LLMs has proven to be an effective tool to improve alignment based on the best-of-$N$ policy. In this paper, we propose a new inferential framework for hypothesis testing among the ranking for language models. Our framework is based on a nonparametric contextual ranking framework designed to assess large language models' domain-specific expertise, leveraging nonparametric scoring methods to account for their sensitivity to the prompts. To characterize the combinatorial complexity of the ranking, we introduce a novel concept of confidence diagram, which leverages a Hasse diagram to represent the entire confidence set of rankings by a single directed graph. We show the validity of the proposed confidence diagram by advancing the Gaussian multiplier bootstrap theory to accommodate the supremum of independent empirical processes that are not necessarily identically distributed. Extensive numerical experiments conducted on both synthetic and real data demonstrate that our approach offers valuable insight into the evaluation for the performance of different LLMs across various medical domains.
Related papers
- Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
Large language models (LLMs) have demonstrated significant utilities in real-world applications.
Benchmark evaluations are crucial for assessing the capabilities of LLMs.
arXiv Detail & Related papers (2025-02-13T03:43:33Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - Graph-based Confidence Calibration for Large Language Models [22.394717844099684]
We propose a novel method to develop a well-calibrated confidence estimation model.
We use a weighted graph to represent the consistency among the large language models' responses to a question.
We then train a graph neural network to estimate the probability of correct responses.
arXiv Detail & Related papers (2024-11-03T20:36:44Z) - CREAM: Consistency Regularized Self-Rewarding Language Models [34.325289477993586]
Self-rewarding large language models (LLM) have successfully applied LLM-as-a-Judge to improve the alignment performance without the need of human annotations for preference data.
However, there is no guarantee of accuracy in the rewarding and ranking, which is critical for ensuring accurate rewards and high-quality preference data.
We propose a Consistency Regularized sElf-rewarding lAnguage Model (CREAM) that leverages the rewarding consistency across different iterations to regularize the self-rewarding training.
arXiv Detail & Related papers (2024-10-16T16:51:01Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)
MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.
It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
This paper proposes a novel measure named Top-K Pairwise Ranking (TKPR)
A series of analyses show that TKPR is compatible with existing ranking-based measures.
On the other hand, we establish a sharp generalization bound for the proposed framework based on a novel technique named data-dependent contraction.
arXiv Detail & Related papers (2024-07-09T09:36:37Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Regression-aware Inference with LLMs [52.764328080398805]
We show that an inference strategy can be sub-optimal for common regression and scoring evaluation metrics.
We propose alternate inference strategies that estimate the Bayes-optimal solution for regression and scoring metrics in closed-form from sampled responses.
arXiv Detail & Related papers (2024-03-07T03:24:34Z) - HGOT: Hierarchical Graph of Thoughts for Retrieval-Augmented In-Context Learning in Factuality Evaluation [20.178644251662316]
We introduce the hierarchical graph of thoughts (HGOT) to enhance the retrieval of pertinent passages during in-context learning.
The framework employs the divide-and-conquer strategy to break down complex queries into manageable sub-queries.
It refines self-consistency majority voting for answer selection, which incorporates the recently proposed citation recall and precision metrics.
arXiv Detail & Related papers (2024-02-14T18:41:19Z) - Found in the Middle: Permutation Self-Consistency Improves Listwise Ranking in Large Language Models [63.714662435555674]
Large language models (LLMs) exhibit positional bias in how they use context.
We propose permutation self-consistency, a form of self-consistency over ranking list outputs of black-box LLMs.
Our approach improves scores from conventional inference by up to 7-18% for GPT-3.5 and 8-16% for LLaMA v2 (70B)
arXiv Detail & Related papers (2023-10-11T17:59:02Z) - PRD: Peer Rank and Discussion Improve Large Language Model based Evaluations [10.709365940160685]
Modern large language models (LLMs) are hard to evaluate and compare automatically.
We propose a peer rank (PR) algorithm that takes into account each peer LLM's pairwise preferences of all answer pairs.
We find that our approaches achieve higher accuracy and align better with human judgments.
arXiv Detail & Related papers (2023-07-06T04:05:44Z) - Lagrangian Inference for Ranking Problems [18.70913621061314]
We consider the widely adopted Bradley-Terry-Luce (BTL) model, where each item is assigned a positive preference score that determines the Bernoulli distributions of pairwise comparisons' outcomes.
Our proposed method aims to infer general ranking properties of the BTL model.
We generalize our framework to multiple testing problems where we control the false discovery rate (FDR) and apply the method to infer the top-$K$ ranked items.
arXiv Detail & Related papers (2021-10-01T01:16:25Z) - Tight Mutual Information Estimation With Contrastive Fenchel-Legendre
Optimization [69.07420650261649]
We introduce a novel, simple, and powerful contrastive MI estimator named as FLO.
Empirically, our FLO estimator overcomes the limitations of its predecessors and learns more efficiently.
The utility of FLO is verified using an extensive set of benchmarks, which also reveals the trade-offs in practical MI estimation.
arXiv Detail & Related papers (2021-07-02T15:20:41Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.