論文の概要: Speech Is Not Enough: Interpreting Nonverbal Indicators of Common Knowledge and Engagement
- arxiv url: http://arxiv.org/abs/2412.05797v1
- Date: Sun, 08 Dec 2024 03:26:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:21.421480
- Title: Speech Is Not Enough: Interpreting Nonverbal Indicators of Common Knowledge and Engagement
- Title(参考訳): 会話は十分ではない: 共通知識とエンゲージメントの非言語指標を解釈する
- Authors: Derek Palmer, Yifan Zhu, Kenneth Lai, Hannah VanderHoeven, Mariah Bradford, Ibrahim Khebour, Carlos Mabrey, Jack Fitzgerald, Nikhil Krishnaswamy, Martha Palmer, James Pustejovsky,
- Abstract要約: マルチモーダル分析は、グループメンバーの非言語的相互作用を特定するために重要である。
本稿では,教室における学生のタスク指向インタラクションにおける非言語行動の検出と追跡について紹介する。
- 参考スコア(独自算出の注目度): 17.25829281965904
- License:
- Abstract: Our goal is to develop an AI Partner that can provide support for group problem solving and social dynamics. In multi-party working group environments, multimodal analytics is crucial for identifying non-verbal interactions of group members. In conjunction with their verbal participation, this creates an holistic understanding of collaboration and engagement that provides necessary context for the AI Partner. In this demo, we illustrate our present capabilities at detecting and tracking nonverbal behavior in student task-oriented interactions in the classroom, and the implications for tracking common ground and engagement.
- Abstract(参考訳): 私たちのゴールは、グループ問題解決と社会的ダイナミクスをサポートするAIパートナーを開発することです。
マルチパーティワーキンググループ環境では、グループメンバーの非言語的相互作用を特定するために、マルチモーダル分析が不可欠である。
言葉による参加と合わせて、AIパートナに必要なコンテキストを提供するコラボレーションとエンゲージメントの全体的理解が生まれる。
本稿では,教室における学生のタスク指向インタラクションにおける非言語行動の検出と追跡に関する現状と,共通場とエンゲージメントの追跡における意義について説明する。
関連論文リスト
- Nonverbal Interaction Detection [83.40522919429337]
この研究は、社会的文脈における人間の非言語的相互作用を理解するという新たな課題に対処する。
我々はNVIと呼ばれる新しい大規模データセットを寄贈し、人間とそれに対応する社会グループのための境界ボックスを含むように細心の注意を払ってアノテートする。
第2に,非言語的インタラクション検出のための新たなタスクNVI-DETを構築し,画像から三つ子を識別する。
第3に,非言語相互作用検出ハイパーグラフ (NVI-DEHR) を提案する。
論文 参考訳(メタデータ) (2024-07-11T02:14:06Z) - Harnessing Transparent Learning Analytics for Individualized Support
through Auto-detection of Engagement in Face-to-Face Collaborative Learning [3.0184625301151833]
本稿では,共同作業における学生の個人参加を自動的に検出する透過的アプローチを提案する。
提案手法は,学生の個人的関与を反映し,異なる協調学習課題を持つ生徒を識別する指標として利用することができる。
論文 参考訳(メタデータ) (2024-01-03T12:20:28Z) - Understanding Idea Creation in Collaborative Discourse through Networks:
The Joint Attention-Interaction-Creation (AIC) Framework [0.42303492200814446]
The Joint Attention-Interaction-Creation (AIC) framework captures important dynamics in collaborative discourse。
このフレームワークは、自然言語処理技術にインフォームドされ、社会意味ネットワーク分析にインスパイアされた、ネットワーク化されたレンズから開発された。
論文 参考訳(メタデータ) (2023-05-25T17:18:19Z) - From Interactive to Co-Constructive Task Learning [13.493719155524404]
インタラクティブなタスク学習に関する現在の提案をレビューし、その主な貢献について論じる。
次に、共同構築の概念について議論し、成人とロボットの相互作用からの研究知見を要約する。
論文 参考訳(メタデータ) (2023-05-24T19:45:30Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects [100.75759050696355]
本稿では,対話エージェントの多種多様な対話における能動性に関する顕著な問題と先進的な設計について概説する。
我々は、現実世界のアプリケーションのニーズを満たすが、将来もっと研究に焦点を当てる必要がある課題について議論する。
論文 参考訳(メタデータ) (2023-05-04T11:38:49Z) - Automatic Context-Driven Inference of Engagement in HMI: A Survey [6.479224589451863]
本稿では,人間と機械の相互作用に関するエンゲージメント推論について述べる。
これには、学際的定義、エンゲージメントコンポーネントと要因、公開データセット、地上真実の評価、そして最も一般的に使用される機能と方法が含まれる。
これは、信頼性の高いコンテキスト認識エンゲージメント推論機能を備えた、将来の人間と機械のインタラクションインターフェースの開発のためのガイドとして機能する。
論文 参考訳(メタデータ) (2022-09-30T10:46:13Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Interacting with Non-Cooperative User: A New Paradigm for Proactive
Dialogue Policy [83.61404191470126]
インタラクティブな環境下でプロアクティブなポリシーを学習できるI-Proという新しいソリューションを提案する。
具体的には,4つの要因からなる学習目標重みを通じてトレードオフを学習する。
実験の結果,I-Proは,有効性と解釈性において,ベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-04-07T14:11:31Z) - Exploring Zero-Shot Emergent Communication in Embodied Multi-Agent
Populations [59.608216900601384]
本研究では,3次元環境下で関節を作動させることでコミュニケーションを学ぶエージェントについて検討する。
現実的な仮定、意図の非一様分布、共通知識エネルギーコストにおいて、これらのエージェントは新規パートナーに一般化するプロトコルを見つけることができることを示す。
論文 参考訳(メタデータ) (2020-10-29T19:23:10Z) - Towards Effective Human-AI Collaboration in GUI-Based Interactive Task
Learning Agents [29.413358312233253]
我々は、インテリジェントエージェントに有用な対話型タスク学習を可能にする上で重要な課題は、効果的な人間とAIのコラボレーションを促進することであると論じている。
SGILITEシステムを設計・開発・研究するための過去5年間の取り組みを振り返る。
論文 参考訳(メタデータ) (2020-03-05T14:12:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。