PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations
- URL: http://arxiv.org/abs/2412.05994v1
- Date: Sun, 08 Dec 2024 16:58:29 GMT
- Title: PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations
- Authors: Namgyu Kang, Jaemin Oh, Youngjoon Hong, Eunbyung Park,
- Abstract summary: The approximation of Partial Differential Equations (PDEs) using neural networks has seen significant advancements.
PINNs often suffer from limited accuracy due to the spectral bias of Multi-Layer Perceptrons (MLPs), which struggle to learn high-frequency and non-linear components.
We propose Physics-Informed Gaussians (PIGs), which combine feature embeddings using Gaussian functions with a lightweight neural network.
- Score: 5.4087282763977855
- License:
- Abstract: The approximation of Partial Differential Equations (PDEs) using neural networks has seen significant advancements through Physics-Informed Neural Networks (PINNs). Despite their straightforward optimization framework and flexibility in implementing various PDEs, PINNs often suffer from limited accuracy due to the spectral bias of Multi-Layer Perceptrons (MLPs), which struggle to effectively learn high-frequency and non-linear components. Recently, parametric mesh representations in combination with neural networks have been investigated as a promising approach to eliminate the inductive biases of neural networks. However, they usually require very high-resolution grids and a large number of collocation points to achieve high accuracy while avoiding overfitting issues. In addition, the fixed positions of the mesh parameters restrict their flexibility, making it challenging to accurately approximate complex PDEs. To overcome these limitations, we propose Physics-Informed Gaussians (PIGs), which combine feature embeddings using Gaussian functions with a lightweight neural network. Our approach uses trainable parameters for the mean and variance of each Gaussian, allowing for dynamic adjustment of their positions and shapes during training. This adaptability enables our model to optimally approximate PDE solutions, unlike models with fixed parameter positions. Furthermore, the proposed approach maintains the same optimization framework used in PINNs, allowing us to benefit from their excellent properties. Experimental results show the competitive performance of our model across various PDEs, demonstrating its potential as a robust tool for solving complex PDEs. Our project page is available at https://namgyukang.github.io/Physics-Informed-Gaussians/
Related papers
- Physics informed cell representations for variational formulation of multiscale problems [8.905008042172883]
Physics-Informed Neural Networks (PINNs) are emerging as a promising tool for solving partial differential equations (PDEs)
PINNs are not well suited for solving PDEs with multiscale features, particularly suffering from slow convergence and poor accuracy.
This article proposes a cell-based model architecture consisting of multilevel multiresolution grids coupled with a multilayer perceptron (MLP)
In essence, by cell-based model along with the parallel tiny-cuda-nn library, our implementation improves convergence speed and numerical accuracy.
arXiv Detail & Related papers (2024-05-27T02:42:16Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Bias-Variance Trade-off in Physics-Informed Neural Networks with
Randomized Smoothing for High-Dimensional PDEs [29.38656057181734]
Physics-informed neural networks (PINNs) have been proven effective for low-dimensional partial differential equations (PDEs)
We present a comprehensive analysis of biases in RS-PINN, attributing them to the nonlinearity of the Mean Squared Error (MSE) loss and the PDE nonlinearity.
We propose tailored bias correction techniques based on the order of PDE nonlinearity.
arXiv Detail & Related papers (2023-11-26T12:50:28Z) - Grad-Shafranov equilibria via data-free physics informed neural networks [0.0]
We show that PINNs can accurately and effectively solve the Grad-Shafranov equation with several different boundary conditions.
We introduce a parameterized PINN framework, expanding the input space to include variables such as pressure, aspect ratio, elongation, and triangularity.
arXiv Detail & Related papers (2023-11-22T16:08:38Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - CP-PINNs: Data-Driven Changepoints Detection in PDEs Using Online Optimized Physics-Informed Neural Networks [0.0]
We investigate the inverse problem for Partial Differential Equations (PDEs) in scenarios where the parameters of the given PDE dynamics may exhibit changepoints at random time.
We employ Physics-Informed Neural Networks (PINNs) - universal approximators capable of estimating the solution of any physical law.
We propose a PINNs extension using a Total-Variation penalty, which allows to accommodate multiple changepoints in the PDE dynamics.
arXiv Detail & Related papers (2022-08-18T04:01:07Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNs approach allows training neural networks while respecting the PDEs as a strong constraint in the optimization.
In standard small-scale circulation simulations, it is shown that the conventional approach incorporates a pseudo diffusive effect that is almost as large as the effect of the turbulent diffusion model.
Of all the schemes tested, only the PINNs approximation accurately predicted the outcome.
arXiv Detail & Related papers (2021-03-15T05:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.