Obstacle-aware Gaussian Process Regression
- URL: http://arxiv.org/abs/2412.06160v1
- Date: Mon, 09 Dec 2024 02:50:20 GMT
- Title: Obstacle-aware Gaussian Process Regression
- Authors: Gaurav Shrivastava,
- Abstract summary: Obstacle-aware trajectory navigation is crucial for many systems.<n>Gaussian Process regression, in its current form, fits a curve to a set of data pairs.<n>We propose 'GP-ND' (Gaussian Process with Negative Datapairs) to fit the model to the positive data pairs while avoiding the negative ones.
- Score: 3.2634122554914002
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Obstacle-aware trajectory navigation is crucial for many systems. For example, in real-world navigation tasks, an agent must avoid obstacles, such as furniture in a room, while planning a trajectory. Gaussian Process (GP) regression, in its current form, fits a curve to a set of data pairs, with each pair consisting of an input point 'x' and its corresponding target regression value 'y(x)' (a positive data pair). However, to account for obstacles, we need to constrain the GP to avoid a target regression value 'y(x-)' for an input point 'x-' (a negative data pair). Our proposed approach, 'GP-ND' (Gaussian Process with Negative Datapairs), fits the model to the positive data pairs while avoiding the negative ones. Specifically, we model the negative data pairs using small blobs of Gaussian distribution and maximize their KL divergence from the GP. Our framework jointly optimizes for both positive and negative data pairs. Our experiments show that GP-ND outperforms traditional GP learning. Additionally, our framework does not affect the scalability of Gaussian Process regression and helps the model converge faster as the data size increases.
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Highly Adaptive Ridge [84.38107748875144]
We propose a regression method that achieves a $n-2/3$ dimension-free L2 convergence rate in the class of right-continuous functions with square-integrable sectional derivatives.
Har is exactly kernel ridge regression with a specific data-adaptive kernel based on a saturated zero-order tensor-product spline basis expansion.
We demonstrate empirical performance better than state-of-the-art algorithms for small datasets in particular.
arXiv Detail & Related papers (2024-10-03T17:06:06Z) - Scaling Laws in Linear Regression: Compute, Parameters, and Data [86.48154162485712]
We study the theory of scaling laws in an infinite dimensional linear regression setup.
We show that the reducible part of the test error is $Theta(-(a-1) + N-(a-1)/a)$.
Our theory is consistent with the empirical neural scaling laws and verified by numerical simulation.
arXiv Detail & Related papers (2024-06-12T17:53:29Z) - Leveraging Locality and Robustness to Achieve Massively Scalable
Gaussian Process Regression [1.3518297878940662]
We introduce a new perspective by exploring robustness properties and limiting behaviour of GP nearest-neighbour (GPnn) prediction.
As the data-size n increases, accuracy of estimated parameters and GP model assumptions become increasingly irrelevant to GPnn predictive accuracy.
We show that this source of inaccuracy can be corrected for, thereby achieving both well-calibrated uncertainty measures and accurate predictions at remarkably low computational cost.
arXiv Detail & Related papers (2023-06-26T14:32:46Z) - Pseudo-Labeling for Kernel Ridge Regression under Covariate Shift [1.3597551064547502]
We learn a regression function with small mean squared error over a target distribution, based on unlabeled data from there and labeled data that may have a different feature distribution.
We propose to split the labeled data into two subsets, and conduct kernel ridge regression on them separately to obtain a collection of candidate models and an imputation model.
Our estimator achieves the minimax optimal error rate up to a polylogarithmic factor, and we find that using pseudo-labels for model selection does not significantly hinder performance.
arXiv Detail & Related papers (2023-02-20T18:46:12Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - MuyGPs: Scalable Gaussian Process Hyperparameter Estimation Using Local
Cross-Validation [1.2233362977312945]
We present MuyGPs, a novel efficient GP hyper parameter estimation method.
MuyGPs builds upon prior methods that take advantage of the nearest neighbors structure of the data.
We show that our method outperforms all known competitors both in terms of time-to-solution and the root mean squared error of the predictions.
arXiv Detail & Related papers (2021-04-29T18:10:21Z) - A Hypergradient Approach to Robust Regression without Correspondence [85.49775273716503]
We consider a variant of regression problem, where the correspondence between input and output data is not available.
Most existing methods are only applicable when the sample size is small.
We propose a new computational framework -- ROBOT -- for the shuffled regression problem.
arXiv Detail & Related papers (2020-11-30T21:47:38Z) - Robust Gaussian Process Regression Based on Iterative Trimming [6.912744078749024]
This paper presents a new robust GP regression algorithm that iteratively trims the most extreme data points.
It can greatly improve the model accuracy for contaminated data even in the presence of extreme or abundant outliers.
As a practical example in the astrophysical study, we show that this method can precisely determine the main-sequence ridge line in the color-magnitude diagram of star clusters.
arXiv Detail & Related papers (2020-11-22T16:43:35Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.