Quantum Algorithms for Optimal Power Flow
- URL: http://arxiv.org/abs/2412.06177v1
- Date: Mon, 09 Dec 2024 03:27:29 GMT
- Title: Quantum Algorithms for Optimal Power Flow
- Authors: Sajad Fathi Hafshejani, Md Mohsin Uddin, David Neufeld, Daya Gaur, Robert Benkoczi,
- Abstract summary: This paper explores the use of quantum computing, specifically the use of HHL and VQLS algorithms, to solve optimal power flow problem in electrical grids.
- Score: 0.2936007114555107
- License:
- Abstract: This paper explores the use of quantum computing, specifically the use of HHL and VQLS algorithms, to solve optimal power flow problem in electrical grids. We investigate the effectiveness of these quantum algorithms in comparison to classical methods. The simulation results presented here which substantially improve the results in [1] indicate that quantum approaches yield similar solutions and optimal costs compared to classical methods, suggesting the potential use case of quantum computing for power system optimization.
Related papers
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Hybrid Quantum-Classical Algorithms [0.0]
This thesis explores hybrid algorithms that combine classical and quantum computing to enhance the performance of classical algorithms.
Two approaches are studied: a hybrid search and sample optimization algorithm and a classical algorithm that assesses the cost and performance of quantum algorithms in chemistry.
arXiv Detail & Related papers (2024-06-18T07:54:05Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Surrogate-based optimization for variational quantum algorithms [0.0]
Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers.
We introduce the idea of learning surrogate models for variational circuits using few experimental measurements.
We then perform parameter optimization using these models as opposed to the original data.
arXiv Detail & Related papers (2022-04-12T00:15:17Z) - Quantum Optimization Heuristics with an Application to Knapsack Problems [5.866941279460248]
This paper introduces two techniques that make the standard Quantum Approximate Optimization Algorithm (QAOA) more suitable for constrained optimization problems.
The first technique describes how to use the outcome of a prior greedy classical algorithm to define an initial quantum state and mixing operation to adjust the quantum optimization algorithm to explore the possible answers around this initial greedy solution.
The second technique is used to nudge the quantum exploration to avoid the local minima around the greedy solutions.
arXiv Detail & Related papers (2021-08-19T17:22:44Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Filtering variational quantum algorithms for combinatorial optimization [0.0]
We introduce the Variational Quantum Eigensolver (F-VQE) which utilizes filtering operators to achieve faster and more reliable convergence to the optimal solution.
We also explore the use of causal cones to reduce the number of qubits required on a quantum computer.
arXiv Detail & Related papers (2021-06-18T11:07:33Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.