論文の概要: Adaptive Resolution Residual Networks -- Generalizing Across Resolutions Easily and Efficiently
- arxiv url: http://arxiv.org/abs/2412.06195v1
- Date: Mon, 09 Dec 2024 04:25:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:56:58.852723
- Title: Adaptive Resolution Residual Networks -- Generalizing Across Resolutions Easily and Efficiently
- Title(参考訳): Adaptive Resolution Residual Networks -- 解決を簡単かつ効率的に一般化する
- Authors: Léa Demeule, Mahtab Sandhu, Glen Berseth,
- Abstract要約: 適応分解能残留ネットワーク(ARRN)について紹介する。
ARRNは適応分解能法と固定分解能法の利点を継承する。
我々はARRNが、柔軟性、堅牢性、計算効率を向上した多様な解像度によって引き起こされる課題を受け入れていることを示す。
- 参考スコア(独自算出の注目度): 7.087237546722617
- License:
- Abstract: The majority of signal data captured in the real world uses numerous sensors with different resolutions. In practice, however, most deep learning architectures are fixed-resolution; they consider a single resolution at training time and inference time. This is convenient to implement but fails to fully take advantage of the diverse signal data that exists. In contrast, other deep learning architectures are adaptive-resolution; they directly allow various resolutions to be processed at training time and inference time. This benefits robustness and computational efficiency but introduces difficult design constraints that hinder mainstream use. In this work, we address the shortcomings of both fixed-resolution and adaptive-resolution methods by introducing Adaptive Resolution Residual Networks (ARRNs), which inherit the advantages of adaptive-resolution methods and the ease of use of fixed-resolution methods. We construct ARRNs from Laplacian residuals, which serve as generic adaptive-resolution adapters for fixed-resolution layers, and which allow casting high-resolution ARRNs into low-resolution ARRNs at inference time by simply omitting high-resolution Laplacian residuals, thus reducing computational cost on low-resolution signals without compromising performance. We complement this novel component with Laplacian dropout, which regularizes for robustness to a distribution of lower resolutions, and which also regularizes for errors that may be induced by approximate smoothing kernels in Laplacian residuals. We provide a solid grounding for the advantageous properties of ARRNs through a theoretical analysis based on neural operators, and empirically show that ARRNs embrace the challenge posed by diverse resolutions with greater flexibility, robustness, and computational efficiency.
- Abstract(参考訳): 現実世界で捉えた信号データの大部分は、解像度の異なる多数のセンサーを使用している。
しかし実際には、ほとんどのディープラーニングアーキテクチャは固定解像度であり、トレーニング時間と推論時間における単一の解像度を考慮している。
これは実装に便利であるが、存在する多様な信号データを完全に活用できない。
対照的に、他のディープラーニングアーキテクチャは適応分解能があり、トレーニング時間と推論時間に様々な解像度を直接処理できる。
これにより堅牢性と計算効率が向上するが、メインストリームの使用を妨げる設計上の制約が生じる。
本研究では,適応分解能手法の利点と固定分解能手法の使いやすさを継承する適応分解能残留ネットワーク(ARRN)を導入することにより,固定分解能法と適応分解能法の両方の欠点に対処する。
固定解像度層に対する汎用適応分解能アダプタとして機能するラプラシア残差からARRNを構築し,高分解能のラプラシア残差を省略することで,高分解能のARRNを推論時に低分解能のARRNにキャストできるので,性能を損なうことなく低分解能信号の計算コストを低減できる。
これは、低分解能の分布にロバスト性を持たせるとともに、ラプラシアン残差の近似滑らかなカーネルによって引き起こされる可能性のある誤差を正則化する。
我々は、ニューラルネットワークに基づく理論的解析を通じて、ARRNの有利な性質を確固たる根拠として、ARRNがより柔軟性、堅牢性、計算効率のよい多様な解像度によって引き起こされる課題を受け入れることを実証的に示す。
関連論文リスト
- Cross-Domain Knowledge Distillation for Low-Resolution Human Pose Estimation [31.970739018426645]
人間のポーズ推定の実践的応用では、低解像度の入力が頻繁に発生し、既存の最先端モデルでは低解像度の画像では不十分である。
本研究は,高分解能モデルから知識を抽出することにより,低分解能モデルの性能向上に重点を置いている。
論文 参考訳(メタデータ) (2024-05-19T04:57:17Z) - DyRA: Portable Dynamic Resolution Adjustment Network for Existing Detectors [0.669087470775851]
本稿では,既存の検出器に画像特異的なスケールファクタを提供する動的解像度調整ネットワークDyRAを紹介する。
ロス関数は、スケールのための異なるサイズのオブジェクトの異なる目的に対する精度低下を最小限に抑えるために考案された。
論文 参考訳(メタデータ) (2023-11-28T07:52:41Z) - An Operator Learning Framework for Spatiotemporal Super-resolution of Scientific Simulations [3.921076451326108]
Super Resolution Operator Network (SRNet) は、演算子学習問題として超解像を扱う。
低分解能近似からパラメトリック微分方程式の連続表現を学ぶために、既存の演算子学習問題から着想を得ている。
低分解能近似が提供されるセンサーの位置に制限は課されない。
論文 参考訳(メタデータ) (2023-11-04T05:33:23Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
入力画像の複数の知覚的特徴を利用する新しいSR手法MPF-Netを提案する。
本稿では,MPFEモジュールを組み込んで,多様な知覚情報を抽出する手法を提案する。
また、モデルの学習能力を向上する対照的な正規化項(CR)も導入する。
論文 参考訳(メタデータ) (2023-05-26T07:35:49Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
低解像度(LR)クエリIDイメージと高解像度(HR)ギャラリーイメージとの整合性を実現する。
実際のカメラとの違いにより、クエリ画像が分解能の低下に悩まされることがしばしばあるため、これは困難かつ実用的な問題である。
本稿では,問合せ画像の解像度に適応する動的計量を用いて,HRとLRの画像を直接比較するためのSRフリーなパラダイムについて検討する。
論文 参考訳(メタデータ) (2022-07-09T03:49:51Z) - Efficient and Degradation-Adaptive Network for Real-World Image
Super-Resolution [28.00231586840797]
実世界の画像超解像(Real-ISR)は、実世界の画像の未知の複雑な劣化のために難しい課題である。
近年のReal-ISRの研究は、画像劣化空間をモデル化することによって大きな進歩を遂げている。
本稿では,各入力画像の劣化を推定してパラメータを適応的に指定する,効率的な劣化適応型超解像ネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-27T05:59:13Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
クロスリゾリューション顔認識(CRFR)は、インテリジェントな監視およびバイオメトリックフォレンジックにおいて重要である。
既存の浅層学習と深層学習に基づく手法は、HR-LR対を共同特徴空間にマッピングすることに焦点を当てている。
本研究では,多レベル深層畳み込みニューラルネットワーク(CNN)の機能を完全に活用し,堅牢なCRFRを実現することを目的とする。
論文 参考訳(メタデータ) (2021-03-25T14:03:42Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
マルコフ決定過程としてのAMRの新規な定式化を提案し,シミュレーションから直接改良政策を訓練するために深部強化学習を適用した。
これらのポリシーアーキテクチャのモデルサイズはメッシュサイズに依存しないため、任意に大きく複雑なシミュレーションにスケールします。
論文 参考訳(メタデータ) (2021-03-01T22:55:48Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
深部畳み込みニューラルネットワーク(CNN)の発展により,ビデオ超解像法(VSR)は近年,顕著な成功を収めている。
本稿では,動作補償を効率的に捕捉し,適応的にネットワークにフィードバックする,シンプルで効果的なブロックである動き適応型フィードバックセル(MAFC)を提案する。
論文 参考訳(メタデータ) (2020-02-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。