論文の概要: LLMs as Debate Partners: Utilizing Genetic Algorithms and Adversarial Search for Adaptive Arguments
- arxiv url: http://arxiv.org/abs/2412.06229v1
- Date: Mon, 09 Dec 2024 06:03:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:59:23.522721
- Title: LLMs as Debate Partners: Utilizing Genetic Algorithms and Adversarial Search for Adaptive Arguments
- Title(参考訳): LLMs as Debate Partners: 遺伝的アルゴリズムとアダプティブ引数の逆探索の利用
- Authors: Prakash Aryan,
- Abstract要約: DebateBrawlは、Large Language Models (LLM)、GA、Adversarial Search (AS)を統合するAIベースの議論プラットフォームである。
このシステムは、その戦略をリアルタイムで適応しながら、一貫性があり、文脈的に関連する議論を生成する際、顕著な性能を示す。
このシステムの精度を維持する能力(人間のみの議論では78%に比べて92%)は、AI支援談話における重要な懸念に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces DebateBrawl, an innovative AI-powered debate platform that integrates Large Language Models (LLMs), Genetic Algorithms (GA), and Adversarial Search (AS) to create an adaptive and engaging debating experience. DebateBrawl addresses the limitations of traditional LLMs in strategic planning by incorporating evolutionary optimization and game-theoretic techniques. The system demonstrates remarkable performance in generating coherent, contextually relevant arguments while adapting its strategy in real-time. Experimental results involving 23 debates show balanced outcomes between AI and human participants, with the AI system achieving an average score of 2.72 compared to the human average of 2.67 out of 10. User feedback indicates significant improvements in debating skills and a highly satisfactory learning experience, with 85% of users reporting improved debating abilities and 78% finding the AI opponent appropriately challenging. The system's ability to maintain high factual accuracy (92% compared to 78% in human-only debates) while generating diverse arguments addresses critical concerns in AI-assisted discourse. DebateBrawl not only serves as an effective educational tool but also contributes to the broader goal of improving public discourse through AI-assisted argumentation. The paper discusses the ethical implications of AI in persuasive contexts and outlines the measures implemented to ensure responsible development and deployment of the system, including robust fact-checking mechanisms and transparency in decision-making processes.
- Abstract(参考訳): 本稿では、大規模言語モデル(LLM)、遺伝的アルゴリズム(GA)、対数探索(AS)を統合し、適応的で魅力的な議論体験を構築する、革新的なAIを活用した議論プラットフォームであるDebateBrawlを紹介する。
DebateBrawlは、進化的最適化とゲーム理論技術を取り入れた戦略計画における従来のLLMの限界に対処する。
このシステムは、その戦略をリアルタイムで適応しながら、一貫性があり、文脈的に関連する議論を生成する際、顕著な性能を示す。
23の議論を含む実験結果は、AIと人間の参加者のバランスの取れた結果を示している。
ユーザの85%が議論能力の改善を報告し、78%がAI反対者が適切に挑戦していると回答している。
システムは、AI支援談話における重要な懸念に対処しながら、高い事実精度(人間のみの議論では78%に比べて92%)を維持する能力を持つ。
DebateBrawlは効果的な教育ツールとして機能するだけでなく、AIによる議論を通じて公衆の会話を改善するという、より広範な目標にも貢献している。
本稿は、AIの説得的文脈における倫理的意味を論じ、堅牢な事実確認機構や意思決定プロセスにおける透明性を含む、システムの開発と展開の責任を負うための措置を概説する。
関連論文リスト
- Do great minds think alike? Investigating Human-AI Complementarity in Question Answering with CAIMIRA [43.116608441891096]
人間は知識に基づく帰納的、概念的推論においてAIシステムより優れています。
GPT-4やLLaMAのような最先端のLLMは、ターゲット情報検索において優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-09T03:53:26Z) - OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
我々は,11,163のバイリンガル問題を含む,テキストのみとインターリーブされたテキストイメージのモダリティを紹介する。
これらの課題には、7つのフィールドと62の国際オリンピック大会にわたる幅広い規律が含まれており、データ漏洩について厳格に調査されている。
我々の評価によると、GPT-4oのような先進モデルでさえ、複雑な推論とマルチモーダル統合における現在のAI制限を反映して、全体的な精度は39.97%しか達成していない。
論文 参考訳(メタデータ) (2024-06-18T16:20:53Z) - Counterfactual Reasoning Using Predicted Latent Personality Dimensions for Optimizing Persuasion Outcome [13.731895847081953]
本稿では,現在進行中の説得会話において,ユーザの潜在人格次元(LPD)を追跡する新しいアプローチを提案する。
我々はこれらのLPDに基づいて、全体的な説得結果を最適化するために、調整済みの対物発話を生成する。
論文 参考訳(メタデータ) (2024-04-21T23:03:47Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
ヒューリスティック分析推論(HAR)戦略は、モデル決定のための合理化のコヒーレンスを大幅に改善する。
以上の結果から, PLM推論の一貫性と信頼性を効果的に向上できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-24T19:46:04Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
Inductive Logic Programmingアプローチを用いて、抽象的および構造化された議論フレームワークのアクセシビリティセマンティクスを解釈可能な方法で学習する新しいフレームワークを提案する。
提案手法は既存の議論解法よりも優れており,フォーマルな議論や人間と機械の対話の領域において,新たな研究の方向性が開けることになる。
論文 参考訳(メタデータ) (2023-10-18T20:18:05Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
われわれはChatEvalと呼ばれるマルチエージェントの審判チームを構築し、異なるモデルから生成された応答の品質を自律的に議論し評価する。
分析の結果,ChatEvalは単なるテキストスコアリングを超越し,信頼性評価のための人間模倣評価プロセスを提供することがわかった。
論文 参考訳(メタデータ) (2023-08-14T15:13:04Z) - The Language Labyrinth: Constructive Critique on the Terminology Used in
the AI Discourse [0.0]
この論文は、AIの議論は依然として「学習」、「学習」、「決定」といったメタファーに批判的な距離が欠如していることが特徴であると主張している。
その結果、責任や潜在的なユースケースに関するリフレクションが大幅に歪められる。
これは重要なコンピュータ科学と言語哲学の交わりにおける概念的な研究である。
論文 参考訳(メタデータ) (2023-07-18T14:32:21Z) - Learning to Prompt in the Classroom to Understand AI Limits: A pilot
study [35.06607166918901]
大規模言語モデル(LLM)と、ChatGPTのような派生したチャットボットは、AIシステムの自然言語処理能力を大幅に改善した。
しかし、AI手法が顕著な貢献を示しているにもかかわらず、興奮は否定的な感情を引き起こしている。
パイロット教育は21人の生徒を抱えた高校で実施された。
論文 参考訳(メタデータ) (2023-07-04T07:51:37Z) - Solving NLP Problems through Human-System Collaboration: A
Discussion-based Approach [98.13835740351932]
本研究の目的は,対話を通じて予測を議論・洗練するシステムのための,データセットと計算フレームワークを構築することである。
提案システムでは,自然言語推論タスクにおいて,最大25ポイントの精度向上が期待できることを示す。
論文 参考訳(メタデータ) (2023-05-19T16:24:50Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Blessing from Human-AI Interaction: Super Reinforcement Learning in
Confounded Environments [19.944163846660498]
本稿では,データ駆動シーケンシャル意思決定に人間-AIインタラクションを活用する超強化学習のパラダイムを紹介する。
未測定のコンファウンディングを伴う意思決定プロセスでは、過去のエージェントによって取られたアクションは、未開示の情報に対する貴重な洞察を提供することができる。
我々は、いくつかの超政治学習アルゴリズムを開発し、その理論的性質を体系的に研究する。
論文 参考訳(メタデータ) (2022-09-29T16:03:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。