論文の概要: Simulating Human-like Daily Activities with Desire-driven Autonomy
- arxiv url: http://arxiv.org/abs/2412.06435v2
- Date: Tue, 04 Mar 2025 16:22:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:10:32.641693
- Title: Simulating Human-like Daily Activities with Desire-driven Autonomy
- Title(参考訳): 欲求駆動型自律神経によるヒト様の日常活動のシミュレーション
- Authors: Yiding Wang, Yuxuan Chen, Fangwei Zhong, Long Ma, Yizhou Wang,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を自律的に提案し,タスクを選択することを可能にする,D2A(Desire-driven Autonomous Agent)を提案する。
各ステップにおいて、エージェントは現在の状態の価値を評価し、一連の候補活動を提案し、その本質的なモチベーションに最適なものを選択する。
- 参考スコア(独自算出の注目度): 25.380194192389492
- License:
- Abstract: Desires motivate humans to interact autonomously with the complex world. In contrast, current AI agents require explicit task specifications, such as instructions or reward functions, which constrain their autonomy and behavioral diversity. In this paper, we introduce a Desire-driven Autonomous Agent (D2A) that can enable a large language model (LLM) to autonomously propose and select tasks, motivated by satisfying its multi-dimensional desires. Specifically, the motivational framework of D2A is mainly constructed by a dynamic Value System, inspired by the Theory of Needs. It incorporates an understanding of human-like desires, such as the need for social interaction, personal fulfillment, and self-care. At each step, the agent evaluates the value of its current state, proposes a set of candidate activities, and selects the one that best aligns with its intrinsic motivations. We conduct experiments on Concordia, a text-based simulator, to demonstrate that our agent generates coherent, contextually relevant daily activities while exhibiting variability and adaptability similar to human behavior. A comparative analysis with other LLM-based agents demonstrates that our approach significantly enhances the rationality of the simulated activities.
- Abstract(参考訳): 欲望は、人間が複雑な世界と自律的に対話する動機を与える。
対照的に、現在のAIエージェントは命令や報酬関数などの明確なタスク仕様を必要としており、それによって自律性と行動の多様性が制限されている。
本稿では,大規模言語モデル(LLM)が,多次元の欲求を満たすことによって動機付けられたタスクを自律的に提案・選択することを可能にする,D2A(Desire-driven Autonomous Agent)を提案する。
具体的には、D2Aのモチベーションの枠組みは主に、ニーズの理論にインスパイアされた動的価値体系によって構築されます。
社会的相互作用、個人的満足、セルフケアの必要性など、人間のような欲求に対する理解が組み込まれている。
各ステップにおいて、エージェントは現在の状態の価値を評価し、一連の候補活動を提案し、その本質的なモチベーションに最適なものを選択する。
我々はテキストベースのシミュレータであるConcordiaの実験を行い、人間の行動に類似した多様性と適応性を示しながら、我々のエージェントがコヒーレントで文脈的に関係のある日々の活動を生成することを示した。
LLMをベースとした他のエージェントとの比較分析により,本手法はシミュレートされたアクティビティの合理性を大幅に向上させることが示された。
関連論文リスト
- Autotelic Reinforcement Learning: Exploring Intrinsic Motivations for Skill Acquisition in Open-Ended Environments [1.104960878651584]
本稿では, 自己強化学習(RL)の概要を概観し, スキルレパートリーのオープンエンド形成における本質的モチベーションの役割を強調した。
知識ベースと能力ベースの本質的なモチベーションの区別を明確にし、これらの概念が自己定義目標を生成・追求できる自律エージェントの開発にどのように役立つかを説明する。
論文 参考訳(メタデータ) (2025-02-06T14:37:46Z) - Rationality based Innate-Values-driven Reinforcement Learning [1.8220718426493654]
本来の価値はエージェントの本質的なモチベーションを表しており、それはエージェントの本来の関心や目標を追求する好みを反映している。
これはAIエージェントの固有値駆動(IV)行動を記述するための優れたモデルである。
本稿では,階層型強化学習モデルを提案する。
論文 参考訳(メタデータ) (2024-11-14T03:28:02Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Investigating Agency of LLMs in Human-AI Collaboration Tasks [24.562034082480608]
我々は社会認知理論に基づいて、エージェントが対話で表現される特徴の枠組みを構築する。
我々は、83人の人間と人間の協力的なインテリアデザインの会話のデータセットを収集する。
論文 参考訳(メタデータ) (2023-05-22T08:17:14Z) - Learning Goal-based Movement via Motivational-based Models in Cognitive
Mobile Robots [58.720142291102135]
人間は、強さと文脈に応じて行動を促進する必要がある。
また、各行動の知覚的快楽に関連する嗜好も作り出します。
これにより、意思決定がより複雑になり、コンテキストに応じてニーズと嗜好のバランスを取ることが求められます。
論文 参考訳(メタデータ) (2023-02-20T04:52:24Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z) - Intrinsic Motivation for Encouraging Synergistic Behavior [55.10275467562764]
スパース・リワード・シナジスティック・タスクにおける強化学習の探索バイアスとしての本質的モチベーションの役割について検討した。
私たちのキーとなる考え方は、シナジスティックなタスクにおける本質的なモチベーションのための優れた指針は、エージェントが自分自身で行動している場合、達成できない方法で世界に影響を与える行動を取ることである。
論文 参考訳(メタデータ) (2020-02-12T19:34:51Z) - Mutual Information-based State-Control for Intrinsically Motivated
Reinforcement Learning [102.05692309417047]
強化学習において、エージェントは、外部報酬信号を用いて一連の目標に到達することを学習する。
自然界では、知的生物は内部の駆動から学習し、外部の信号を必要としない。
目的状態と制御可能な状態の間の相互情報として本質的な目的を定式化する。
論文 参考訳(メタデータ) (2020-02-05T19:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。