The Dilemma of Random Parameter Initialization and Barren Plateaus in Variational Quantum Algorithms
- URL: http://arxiv.org/abs/2412.06462v1
- Date: Mon, 09 Dec 2024 13:08:46 GMT
- Title: The Dilemma of Random Parameter Initialization and Barren Plateaus in Variational Quantum Algorithms
- Authors: Muhammad Kashif, Muhammad Shafique,
- Abstract summary: barren plateaus (BPs) are challenges posed by randomly parameterized quantum circuits (PQCs) within variational quantum algorithms (VQAs)
This paper presents an easy-to-implement approach to mitigate the challenges posed by barren plateaus (BPs) in VQAs.
Our work provides a clear path forward for quantum algorithm developers seeking to mitigate BPs and unlock the full potential of VQAs.
- Score: 4.348591076994875
- License:
- Abstract: This paper presents an easy-to-implement approach to mitigate the challenges posed by barren plateaus (BPs) in randomly initialized parameterized quantum circuits (PQCs) within variational quantum algorithms (VQAs). Recent state-of-the-art research is flooded with a plethora of specialized strategies to overcome BPs, however, our rigorous analysis reveals that these challenging and resource heavy techniques to tackle BPs may not be required. Instead, a careful selection of distribution \emph{range} to initialize the parameters of PQCs can effectively address this issue without complex modifications. We systematically investigate how different ranges of randomly generated parameters influence the occurrence of BPs in VQAs, providing a straightforward yet effective strategy to significantly mitigate BPs and eventually improve the efficiency and feasibility of VQAs. This method simplifies the implementation process and considerably reduces the computational overhead associated with more complex initialization schemes. Our comprehensive empirical validation demonstrates the viability of this approach, highlighting its potential to make VQAs more accessible and practical for a broader range of quantum computing applications. Additionally, our work provides a clear path forward for quantum algorithm developers seeking to mitigate BPs and unlock the full potential of VQAs.
Related papers
- Escaping Barren Plateau: Co-Exploration of Quantum Circuit Parameters and Architectures [9.020754400793933]
Barren plateaus (BP) hinder the training of variational quantum circuits.
BP problem manifests at different scales depending on the specific application.
We propose a novel quantum circuit parameter and architecture co-exploration framework, namely AntiBP.
arXiv Detail & Related papers (2025-01-22T23:34:17Z) - Enhancing Variational Quantum Circuit Training: An Improved Neural Network Approach for Barren Plateau Mitigation [0.0]
variational quantum algorithms (VQAs) are among the most promising algorithms in near-term quantum computing.
They iteratively update circuit parameters to optimize a cost function.
The training of variational quantum circuits (VQCs) is susceptible to a phenomenon known as barren plateaus (BPs)
arXiv Detail & Related papers (2024-11-14T06:43:37Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Trainability Enhancement of Parameterized Quantum Circuits via Reduced-Domain Parameter Initialization [3.031137751464259]
We show that by reducing the initial domain of each parameter proportional to the square root of circuit depth, the magnitude of the cost gradient decays at most inversely to qubit count and circuit depth.
This strategy can protect specific quantum neural networks from exponentially many spurious local minima.
arXiv Detail & Related papers (2023-02-14T06:41:37Z) - Parameter-Parallel Distributed Variational Quantum Algorithm [7.255056332088222]
Variational quantum algorithms (VQAs) have emerged as a promising near-term technique to explore practical quantum advantage on noisy devices.
Here, we propose a parameter-parallel distributed variational quantum algorithm (PPD-VQA) to accelerate the training process by parameter-parallel training with multiple quantum processors.
The achieved results suggest that the PPD-VQA could provide a practical solution for coordinating multiple quantum processors to handle large-scale real-word applications.
arXiv Detail & Related papers (2022-07-31T15:09:12Z) - Mitigating Barren Plateaus with Transfer-learning-inspired Parameter
Initializations [2.4290469931265344]
Variational quantum algorithms (VQAs) are widely applied in the noisy intermediate-scale quantum era.
Training VQAs faces difficulties, one of which is the so-called barren plateaus (BP) phenomenon.
arXiv Detail & Related papers (2021-12-21T02:52:59Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.