3D Spatial Understanding in MLLMs: Disambiguation and Evaluation
- URL: http://arxiv.org/abs/2412.06613v1
- Date: Mon, 09 Dec 2024 16:04:32 GMT
- Title: 3D Spatial Understanding in MLLMs: Disambiguation and Evaluation
- Authors: Chun-Peng Chang, Alain Pagani, Didier Stricker,
- Abstract summary: We propose techniques to enhance the model's ability to localize and disambiguate target objects.
Our approach achieves state-of-the-art performance on conventional metrics that evaluate sentence similarity.
- Score: 13.614206918726314
- License:
- Abstract: Multimodal Large Language Models (MLLMs) have made significant progress in tasks such as image captioning and question answering. However, while these models can generate realistic captions, they often struggle with providing precise instructions, particularly when it comes to localizing and disambiguating objects in complex 3D environments. This capability is critical as MLLMs become more integrated with collaborative robotic systems. In scenarios where a target object is surrounded by similar objects (distractors), robots must deliver clear, spatially-aware instructions to guide humans effectively. We refer to this challenge as contextual object localization and disambiguation, which imposes stricter constraints than conventional 3D dense captioning, especially regarding ensuring target exclusivity. In response, we propose simple yet effective techniques to enhance the model's ability to localize and disambiguate target objects. Our approach not only achieves state-of-the-art performance on conventional metrics that evaluate sentence similarity, but also demonstrates improved 3D spatial understanding through 3D visual grounding model.
Related papers
- ObjVariantEnsemble: Advancing Point Cloud LLM Evaluation in Challenging Scenes with Subtly Distinguished Objects [1.5408065585641535]
3D scene understanding is an important task, and there has been a recent surge of research interest in aligning 3D representations of point clouds with text to empower embodied AI.
Due to the lack of comprehensive 3D benchmarks, the capabilities of 3D models in real-world scenes, particularly those that are challenging with subtly distinguished objects, remain insufficiently investigated.
arXiv Detail & Related papers (2024-12-19T13:27:58Z) - LLMI3D: MLLM-based 3D Perception from a Single 2D Image [77.13869413871028]
multimodal large language models (MLLMs) excel in general capacity but underperform in 3D tasks.
In this paper, we propose solutions for weak 3D local spatial object perception, poor text-based geometric numerical output, and inability to handle camera focal variations.
We employ parameter-efficient fine-tuning for a pre-trained MLLM and develop LLMI3D, a powerful 3D perception MLLM.
arXiv Detail & Related papers (2024-08-14T10:00:16Z) - Mixed Diffusion for 3D Indoor Scene Synthesis [55.94569112629208]
We present MiDiffusion, a novel mixed discrete-continuous diffusion model designed to synthesize plausible 3D indoor scenes.
We show it outperforms state-of-the-art autoregressive and diffusion models in floor-conditioned 3D scene synthesis.
arXiv Detail & Related papers (2024-05-31T17:54:52Z) - Transcrib3D: 3D Referring Expression Resolution through Large Language Models [28.121606686759225]
We introduce Transcrib3D, an approach that brings together 3D detection methods and the emergent reasoning capabilities of large language models.
Transcrib3D achieves state-of-the-art results on 3D reference resolution benchmarks.
We show that our method enables a real robot to perform pick-and-place tasks given queries that contain challenging referring expressions.
arXiv Detail & Related papers (2024-04-30T02:48:20Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - Dense Object Grounding in 3D Scenes [28.05720194887322]
Localizing objects in 3D scenes according to the semantics of a given natural language is a fundamental yet important task in the field of multimedia understanding.
We introduce 3D Dense Object Grounding (3D DOG), to jointly localize multiple objects described in a more complicated paragraph rather than a single sentence.
Our proposed 3DOGSFormer outperforms state-of-the-art 3D single-object grounding methods and their dense-object variants by significant margins.
arXiv Detail & Related papers (2023-09-05T13:27:19Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
This paper shows that robustness and generalisation to novel scene objects in 3D object-aware character synthesis can be achieved by training a motion model with as few as one reference object.
We leverage an implicit feature representation trained on object-only datasets, which encodes an SE(3)-equivariant descriptor field around the object.
We demonstrate substantial improvements in 3D virtual character motion and interaction quality and robustness to scenarios with unseen objects.
arXiv Detail & Related papers (2023-08-24T17:59:51Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
We develop a spatial-language model for a 3D visual grounding problem.
We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D.
arXiv Detail & Related papers (2021-07-07T18:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.