3D Spatial Understanding in MLLMs: Disambiguation and Evaluation
- URL: http://arxiv.org/abs/2412.06613v2
- Date: Fri, 04 Apr 2025 06:33:57 GMT
- Title: 3D Spatial Understanding in MLLMs: Disambiguation and Evaluation
- Authors: Chun-Peng Chang, Alain Pagani, Didier Stricker,
- Abstract summary: We propose techniques to enhance the model's ability to localize and disambiguate target objects.<n>Our approach achieves state-of-the-art performance on conventional metrics that evaluate sentence similarity.
- Score: 13.614206918726314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) have made significant progress in tasks such as image captioning and question answering. However, while these models can generate realistic captions, they often struggle with providing precise instructions, particularly when it comes to localizing and disambiguating objects in complex 3D environments. This capability is critical as MLLMs become more integrated with collaborative robotic systems. In scenarios where a target object is surrounded by similar objects (distractors), robots must deliver clear, spatially-aware instructions to guide humans effectively. We refer to this challenge as contextual object localization and disambiguation, which imposes stricter constraints than conventional 3D dense captioning, especially regarding ensuring target exclusivity. In response, we propose simple yet effective techniques to enhance the model's ability to localize and disambiguate target objects. Our approach not only achieves state-of-the-art performance on conventional metrics that evaluate sentence similarity, but also demonstrates improved 3D spatial understanding through 3D visual grounding model.
Related papers
- SORT3D: Spatial Object-centric Reasoning Toolbox for Zero-Shot 3D Grounding Using Large Language Models [9.568997654206823]
SORT3D is an approach that utilizes rich object attributes from 2D data and merges as-based spatial reasoning toolbox with the ability of large language models.
We show that SORT3D achieves state-of-the-art performance on complex view-dependent grounding tasks on two benchmarks.
We also implement the pipeline to run real-time on an autonomous vehicle and demonstrate that our approach can be used for object-goal navigation on previously unseen real-world environments.
arXiv Detail & Related papers (2025-04-25T20:24:11Z) - IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments [56.85804719947]
We present IAAO, a framework that builds an explicit 3D model for intelligent agents to gain understanding of articulated objects in their environment through interaction.
We first build hierarchical features and label fields for each object state using 3D Gaussian Splatting (3DGS) by distilling mask features and view-consistent labels from multi-view images.
We then perform object- and part-level queries on the 3D Gaussian primitives to identify static and articulated elements, estimating global transformations and local articulation parameters along with affordances.
arXiv Detail & Related papers (2025-04-09T12:36:48Z) - ReasonGrounder: LVLM-Guided Hierarchical Feature Splatting for Open-Vocabulary 3D Visual Grounding and Reasoning [68.4209681278336]
Open-vocabulary 3D visual grounding and reasoning aim to localize objects in a scene based on implicit language descriptions.
Current methods struggle because they rely heavily on fine-tuning with 3D annotations and mask proposals.
We propose ReasonGrounder, an LVLM-guided framework that uses hierarchical 3D feature Gaussian fields for adaptive grouping.
arXiv Detail & Related papers (2025-03-30T03:40:35Z) - MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation [87.30919771444117]
Reasoning segmentation aims to segment target objects in complex scenes based on human intent and spatial reasoning.
Recent multimodal large language models (MLLMs) have demonstrated impressive 2D image reasoning segmentation.
We introduce MLLM-For3D, a framework that transfers knowledge from 2D MLLMs to 3D scene understanding.
arXiv Detail & Related papers (2025-03-23T16:40:20Z) - ObjVariantEnsemble: Advancing Point Cloud LLM Evaluation in Challenging Scenes with Subtly Distinguished Objects [1.5408065585641535]
3D scene understanding is an important task, and there has been a recent surge of research interest in aligning 3D representations of point clouds with text to empower embodied AI.
Due to the lack of comprehensive 3D benchmarks, the capabilities of 3D models in real-world scenes, particularly those that are challenging with subtly distinguished objects, remain insufficiently investigated.
arXiv Detail & Related papers (2024-12-19T13:27:58Z) - LLMI3D: Empowering LLM with 3D Perception from a Single 2D Image [72.14973729674995]
Current 3D perception methods, particularly small models, struggle with processing logical reasoning, question-answering, and handling open scenario categories.
We propose solutions: Spatial-Enhanced Local Feature Mining for better spatial feature extraction, 3D Query Token-Derived Info Decoding for precise geometric regression, and Geometry Projection-Based 3D Reasoning for handling camera focal length variations.
arXiv Detail & Related papers (2024-08-14T10:00:16Z) - Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model [51.83436609094658]
We introduce Coarse Correspondences, a simple lightweight method that enhances MLLMs' spatial-temporal reasoning with 2D images as input.
Our method uses a lightweight tracking model to identify primary object correspondences between frames in a video or across different image viewpoints.
We demonstrate that this simple training-free approach brings substantial gains to GPT4-V/O consistently on four benchmarks.
arXiv Detail & Related papers (2024-08-01T17:57:12Z) - Transcrib3D: 3D Referring Expression Resolution through Large Language Models [28.121606686759225]
We introduce Transcrib3D, an approach that brings together 3D detection methods and the emergent reasoning capabilities of large language models.
Transcrib3D achieves state-of-the-art results on 3D reference resolution benchmarks.
We show that our method enables a real robot to perform pick-and-place tasks given queries that contain challenging referring expressions.
arXiv Detail & Related papers (2024-04-30T02:48:20Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - Four Ways to Improve Verbo-visual Fusion for Dense 3D Visual Grounding [56.00186960144545]
3D visual grounding is the task of localizing the object in a 3D scene which is referred by a description in natural language.
We propose a dense 3D grounding network, featuring four novel stand-alone modules that aim to improve grounding performance.
arXiv Detail & Related papers (2023-09-08T19:27:01Z) - Dense Object Grounding in 3D Scenes [28.05720194887322]
Localizing objects in 3D scenes according to the semantics of a given natural language is a fundamental yet important task in the field of multimedia understanding.
We introduce 3D Dense Object Grounding (3D DOG), to jointly localize multiple objects described in a more complicated paragraph rather than a single sentence.
Our proposed 3DOGSFormer outperforms state-of-the-art 3D single-object grounding methods and their dense-object variants by significant margins.
arXiv Detail & Related papers (2023-09-05T13:27:19Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
We develop a spatial-language model for a 3D visual grounding problem.
We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D.
arXiv Detail & Related papers (2021-07-07T18:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.