論文の概要: Towards Brain Passage Retrieval -- An Investigation of EEG Query Representations
- arxiv url: http://arxiv.org/abs/2412.06695v3
- Date: Mon, 12 May 2025 19:57:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 16:45:08.756999
- Title: Towards Brain Passage Retrieval -- An Investigation of EEG Query Representations
- Title(参考訳): 脳経路検索に向けて -脳波クエリー表現の検討-
- Authors: Niall McGuire, Yashar Moshfeghi,
- Abstract要約: 情報検索システムは、ユーザーの内部情報要求を(テキスト)クエリに変換する能力に依存している。
脳信号から明示的なテキストクエリをデコードしようとする現在のアプローチでは、効果が限られている。
本稿では,中間クエリ変換を必要としない新しいフレームワークであるBPR(Brain Passage Retrieval)を提案する。
- 参考スコア(独自算出の注目度): 6.084958172018792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information Retrieval (IR) systems primarily rely on users' ability to translate their internal information needs into (text) queries. However, this translation process is often uncertain and cognitively demanding, leading to queries that incompletely or inaccurately represent users' true needs. This challenge is particularly acute for users with ill-defined information needs or physical impairments that limit traditional text input, where the gap between cognitive intent and query expression becomes even more pronounced. Recent neuroscientific studies have explored Brain-Machine Interfaces (BMIs) as a potential solution, aiming to bridge the gap between users' cognitive semantics and their search intentions. However, current approaches attempting to decode explicit text queries from brain signals have shown limited effectiveness in learning robust brain-to-text representations, often failing to capture the nuanced semantic information present in brain patterns. To address these limitations, we propose BPR (Brain Passage Retrieval), a novel framework that eliminates the need for intermediate query translation by enabling direct retrieval of relevant passages from users' brain signals. Our approach leverages dense retrieval architectures to map EEG signals and text passages into a shared semantic space. Through comprehensive experiments on the ZuCo dataset, we demonstrate that BPR achieves up to 8.81% improvement in precision@5 over existing EEG-to-text baselines, while maintaining effectiveness across 30 participants. Our ablation studies reveal the critical role of hard negative sampling and specialised brain encoders in achieving robust cross-modal alignment. These results establish the viability of direct brain-to-passage retrieval and provide a foundation for developing more natural interfaces between users' cognitive states and IR systems.
- Abstract(参考訳): Information Retrieval (IR) システムは、主にユーザーの内部情報要求を(テキスト)クエリに変換する能力に依存している。
しかし、この翻訳プロセスは、しばしば不確実で認知的に要求され、不完全または不正確なユーザーの真のニーズを表すクエリへと繋がる。
この課題は、未定義の情報ニーズや、従来のテキスト入力を制限する物理的障害を抱えるユーザにとって特に深刻であり、認知意図とクエリ表現のギャップはさらに顕著になる。
最近の神経科学的研究は、ユーザの認知的意味と検索意図のギャップを埋めることを目的として、脳-機械インタフェース(BMI)を潜在的な解決策として探求している。
しかし、現在の脳信号から明示的なテキストクエリをデコードしようとするアプローチは、堅牢な脳からテキストへの表現を学習する上で、限られた効果を示しており、しばしば、脳パターンに存在するニュアンスドセマンティック情報をキャプチャすることができない。
これらの制約に対処するために,ユーザの脳信号から関連するパスを直接検索することで,中間的なクエリ変換の必要性を解消する新しいフレームワークであるBPR(Brain Passage Retrieval)を提案する。
提案手法は,脳波信号やテキストパスを共有意味空間にマッピングするために,高密度検索アーキテクチャを利用する。
ZuCoデータセットの総合的な実験を通じて、BPRが既存のEEG-to-textベースラインよりも最大8.81%精度の改善を実現し、30人の参加者で有効性を維持していることを示す。
我々のアブレーション研究は、堅牢なクロスモーダルアライメントを実現する上で、ハードネガティブサンプリングと特別な脳エンコーダの重要性を明らかにした。
これらの結果から,脳間直接検索の実現可能性を確立し,ユーザの認知状態とIRシステムとのより自然なインターフェース構築の基盤を提供する。
関連論文リスト
- sEEG-based Encoding for Sentence Retrieval: A Contrastive Learning Approach to Brain-Language Alignment [8.466223794246261]
本稿では,凍結したCLIPモデルの文埋め込み空間に単射ステレオ脳波信号(sEEG)を投影するコントラスト学習フレームワークであるSSENSEを提案する。
本手法は,自然主義映画視聴データセットから,時系列のsEEGと音声の書き起こしについて評価する。
論文 参考訳(メタデータ) (2025-04-20T03:01:42Z) - Bridging Brain Signals and Language: A Deep Learning Approach to EEG-to-Text Decoding [1.1655046053160683]
本稿では,従来の閉語彙EEG-to-textデコードアプローチを変更する特殊なフレームワークを提案する。
本研究の目的は,オープン語彙テキスト生成システムと人間の脳信号の解釈を関連付けることである。
論文 参考訳(メタデータ) (2025-02-11T14:43:14Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-12-13T16:27:54Z) - Boosting Semi-Supervised Scene Text Recognition via Viewing and Summarizing [71.29488677105127]
既存のシーンテキスト認識(STR)手法は、特に芸術的で歪んだ文字に対して、挑戦的なテキストを認識するのに苦労している。
人的コストを伴わずに、合成データと実際のラベルなしデータを活用して、対照的な学習ベースのSTRフレームワークを提案する。
本手法は,共通ベンチマークとUnion14M-Benchmarkで平均精度94.7%,70.9%のSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-11-23T15:24:47Z) - SEE: Semantically Aligned EEG-to-Text Translation [5.460650382586978]
神経生理学的信号を言語に復号することは、脳-コンピュータインターフェース(BCI)の応用において非常に興味深い研究である。
現在のEEG-to-Textデコーディングアプローチは、EEGレコードと生テキストの間に大きなドメインギャップがあるため、課題に直面している。
本稿では,脳波からテキストへのデコードを改善するための新しい手法であるセマンティック・アラインドEEG-to-Text Translationを提案する。
論文 参考訳(メタデータ) (2024-09-14T05:37:15Z) - Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding [118.75567341513897]
既存のメソッドは通常、ターゲットテキストを分離して分析するか、非メンバーコンテキストでのみ分析する。
Con-ReCallは、メンバと非メンバのコンテキストによって誘導される非対称な分布シフトを利用する新しいアプローチである。
論文 参考訳(メタデータ) (2024-09-05T09:10:38Z) - Towards Linguistic Neural Representation Learning and Sentence Retrieval from Electroencephalogram Recordings [27.418738450536047]
脳波信号を文に変換するための2ステップパイプラインを提案する。
まず,自然読解中に記録された脳波データから単語レベルの意味情報を学習できることを確認する。
脳波エンコーダからの予測に基づいて文章を検索するために,学習不要な検索手法を用いる。
論文 参考訳(メタデータ) (2024-08-08T03:40:25Z) - Advancing Aspect-Based Sentiment Analysis through Deep Learning Models [4.0064131990718606]
本研究では,セティシィス(SentiSys)と呼ばれる革新的なエッジ強化GCNを導入し,無傷な特徴情報を保存しながら構文グラフをナビゲートする。
実験結果から,SentiSysを用いたアスペクトベース感情分析の性能向上が示された。
論文 参考訳(メタデータ) (2024-04-04T07:31:56Z) - Bidirectional Trained Tree-Structured Decoder for Handwritten
Mathematical Expression Recognition [51.66383337087724]
Handwriting Mathematical Expression Recognition (HMER) タスクは、OCRの分野における重要な分岐である。
近年の研究では、双方向コンテキスト情報の導入により、HMERモデルの性能が大幅に向上することが示されている。
本稿では,MF-SLT と双方向非同期トレーニング (BAT) 構造を提案する。
論文 参考訳(メタデータ) (2023-12-31T09:24:21Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
ヒューマンオブジェクトインタラクション(HOI)検出は、コンピュータビジョンの課題である。
本稿では,構造化テキスト知識を組み込んだHOI検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:52Z) - A Hybrid End-to-End Spatio-Temporal Attention Neural Network with
Graph-Smooth Signals for EEG Emotion Recognition [1.6328866317851187]
本稿では,ネットワーク・テンポラルエンコーディングと繰り返しアテンションブロックのハイブリッド構造を用いて,解釈可能な表現を取得するディープニューラルネットワークを提案する。
提案したアーキテクチャは、公開されているDEAPデータセット上での感情分類の最先端結果を上回ることを実証する。
論文 参考訳(メタデータ) (2023-07-06T15:35:14Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
本稿では,REDAffectiveLMと呼ばれる深層学習モデルを用いて,短文文書からの読み手感情検出のための新しい手法を提案する。
コンテクストに特化してリッチ表現に影響を与え, リッチBi-LSTM+Attentionに影響を及ぼすタンデムにおいて, トランスフォーマーに基づく事前学習言語モデルを用いることで, リッチ表現に影響を及ぼす。
論文 参考訳(メタデータ) (2023-01-21T19:28:25Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - End-to-End Active Speaker Detection [58.7097258722291]
本稿では,特徴学習と文脈予測を共同で学習するエンド・ツー・エンドのトレーニングネットワークを提案する。
また、時間間グラフニューラルネットワーク(iGNN)ブロックを導入し、ASD問題における主要なコンテキストのソースに応じてメッセージパッシングを分割する。
実験により、iGNNブロックからの集約された特徴はASDにより適しており、その結果、最先端のアートパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2022-03-27T08:55:28Z) - MERIt: Meta-Path Guided Contrastive Learning for Logical Reasoning [63.50909998372667]
テキストの論理的ReasonIngに対して,Metaパスを用いたコントラスト学習手法であるMERItを提案する。
2つの新しい戦略が我々の手法の必須要素である。
論文 参考訳(メタデータ) (2022-03-01T11:13:00Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
最先端のブレイン・トゥ・テキストシステムは、ニューラルネットワークを使用して脳信号から直接言語を復号することに成功した。
本稿では,自然読解課題における語彙的脳波(EEG)-テキスト列列列復号化とゼロショット文感性分類に問題を拡張する。
脳波-テキストデコーディングで40.1%のBLEU-1スコア、ゼロショット脳波に基づく3次感情分類で55.6%のF1スコアを達成し、教師付きベースラインを著しく上回る結果となった。
論文 参考訳(メタデータ) (2021-12-05T21:57:22Z) - Subject Independent Emotion Recognition using EEG Signals Employing
Attention Driven Neural Networks [2.76240219662896]
主観非依存の感情認識が可能な新しいディープラーニングフレームワークを提案する。
タスクを実行するために、アテンションフレームワークを備えた畳み込みニューラルネットワーク(CNN)を提示する。
提案手法は、公開データセットを使用して検証されている。
論文 参考訳(メタデータ) (2021-06-07T09:41:15Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Neural Data-to-Text Generation via Jointly Learning the Segmentation and
Correspondence [48.765579605145454]
対象のテキストを断片単位に明示的に分割し,それらのデータ対応と整合させることを提案する。
結果として生じるアーキテクチャは、ニューラルアテンションモデルと同じ表現力を維持している。
E2EとWebNLGのベンチマークでは、提案モデルがニューラルアテンションよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2020-05-03T14:28:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。