Toward Non-Invasive Diagnosis of Bankart Lesions with Deep Learning
- URL: http://arxiv.org/abs/2412.06717v1
- Date: Mon, 09 Dec 2024 18:04:27 GMT
- Title: Toward Non-Invasive Diagnosis of Bankart Lesions with Deep Learning
- Authors: Sahil Sethi, Sai Reddy, Mansi Sakarvadia, Jordan Serotte, Darlington Nwaudo, Nicholas Maassen, Lewis Shi,
- Abstract summary: Bankart lesions, or anterior-inferior glenoid labral tears, are diagnostically challenging on standard MRIs.
This study develops deep learning (DL) models to detect Bankart lesions on both standard MRIs and MRAs.
- Score: 0.0
- License:
- Abstract: Bankart lesions, or anterior-inferior glenoid labral tears, are diagnostically challenging on standard MRIs due to their subtle imaging features-often necessitating invasive MRI arthrograms (MRAs). This study develops deep learning (DL) models to detect Bankart lesions on both standard MRIs and MRAs, aiming to improve diagnostic accuracy and reduce reliance on MRAs. We curated a dataset of 586 shoulder MRIs (335 standard, 251 MRAs) from 558 patients who underwent arthroscopy. Ground truth labels were derived from intraoperative findings, the gold standard for Bankart lesion diagnosis. Separate DL models for MRAs and standard MRIs were trained using the Swin Transformer architecture, pre-trained on a public knee MRI dataset. Predictions from sagittal, axial, and coronal views were ensembled to optimize performance. The models were evaluated on a 20% hold-out test set (117 MRIs: 46 MRAs, 71 standard MRIs). Bankart lesions were identified in 31.9% of MRAs and 8.6% of standard MRIs. The models achieved AUCs of 0.87 (86% accuracy, 83% sensitivity, 86% specificity) and 0.90 (85% accuracy, 82% sensitivity, 86% specificity) on standard MRIs and MRAs, respectively. These results match or surpass radiologist performance on our dataset and reported literature metrics. Notably, our model's performance on non-invasive standard MRIs matched or surpassed the radiologists interpreting MRAs. This study demonstrates the feasibility of using DL to address the diagnostic challenges posed by subtle pathologies like Bankart lesions. Our models demonstrate potential to improve diagnostic confidence, reduce reliance on invasive imaging, and enhance accessibility to care.
Related papers
- Multimodal MRI-Ultrasound AI for Prostate Cancer Detection Outperforms Radiologist MRI Interpretation: A Multi-Center Study [2.493694664727448]
Pre-biopsy magnetic resonance imaging (MRI) is increasingly used to target suspicious prostate lesions.
MRI-detected lesions must still be mapped to transrectal ultrasound (TRUS) images during biopsy, which results in missing clinically significant prostate cancer (CsPCa)
This study systematically evaluates a multimodal AI framework integrating MRI and TRUS image sequences to enhance CsPCa identification.
arXiv Detail & Related papers (2025-01-31T20:04:20Z) - Cancer-Net PCa-Seg: Benchmarking Deep Learning Models for Prostate Cancer Segmentation Using Synthetic Correlated Diffusion Imaging [65.83291923029985]
Prostate cancer (PCa) is the most prevalent cancer among men in the United States, accounting for nearly 300,000 cases, 29% of all diagnoses and 35,000 total deaths in 2024.
Traditional screening methods such as prostate-specific antigen (PSA) testing and magnetic resonance imaging (MRI) have been pivotal in diagnosis, but have faced limitations in specificity and generalizability.
We employ several state-of-the-art deep learning models, including U-Net, SegResNet, Swin UNETR, Attention U-Net, and LightM-UNet, to segment PCa lesions from a 200 CDI$
arXiv Detail & Related papers (2025-01-15T22:23:41Z) - Enhancing Trust in Clinically Significant Prostate Cancer Prediction with Multiple Magnetic Resonance Imaging Modalities [61.36288157482697]
In the United States, prostate cancer is the second leading cause of deaths in males with a predicted 35,250 deaths in 2024.
In this paper, we investigate combining multiple MRI modalities to train a deep learning model to enhance trust in the models for clinically significant prostate cancer prediction.
arXiv Detail & Related papers (2024-11-07T12:48:27Z) - AI-assisted prostate cancer detection and localisation on biparametric MR by classifying radiologist-positives [5.75804178993065]
We propose to develop deep learning models that improve the overall cancer diagnostic accuracy.
We develop a single voxel-level classification model, with a simple percentage threshold to determine positive cases.
Based on the presented experiments from two clinical data sets, we show that the proposed strategy can improve the diagnostic accuracy.
arXiv Detail & Related papers (2024-10-30T14:59:57Z) - Unsupervised dMRI Artifact Detection via Angular Resolution Enhancement and Cycle Consistency Learning [45.3610312584439]
Diffusion magnetic resonance imaging (dMRI) is a crucial technique in neuroimaging studies, allowing for the non-invasive probing of the underlying structures of brain tissues.
Clinical dMRI data is susceptible to various artifacts during acquisition, which can lead to unreliable subsequent analyses.
We propose a novel unsupervised deep learning framework called $textbfU$n $textbfd$MRI $textbfA$rtifact $textbfD$etection via $textbfA$ngular Resolution Enhancement and $textbfC$ycle
arXiv Detail & Related papers (2024-09-24T08:56:10Z) - Towards Non-invasive and Personalized Management of Breast Cancer Patients from Multiparametric MRI via A Large Mixture-of-Modality-Experts Model [19.252851972152957]
We report a mixture-of-modality-experts model (MOME) that integrates multiparametric MRI information within a unified structure.
MOME demonstrated accurate and robust identification of breast cancer.
It could reduce the need for biopsies in BI-RADS 4 patients with a ratio of 7.3%, classify triple-negative breast cancer with an AUROC of 0.709, and predict pathological complete response to neoadjuvant chemotherapy with an AUROC of 0.694.
arXiv Detail & Related papers (2024-08-08T05:04:13Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Diagnosing Bipolar Disorder from 3-D Structural Magnetic Resonance
Images Using a Hybrid GAN-CNN Method [0.0]
This study proposes a hybrid GAN-CNN model to diagnose Bipolar Disorder (BD) from 3-D structural MRI Images (sMRI)
Based on the results, this study obtains an accuracy rate of 75.8%, a sensitivity of 60.3%, and a specificity of 82.5%, which are 3-5% higher than prior work.
arXiv Detail & Related papers (2023-10-11T10:17:41Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
We go below the MRI acceleration factors reported by all published papers that reference the original fastMRI challenge.
We consider powerful deep learning based image enhancement methods to compensate for the underresolved images.
The quality of the reconstructed images surpasses that of the other methods, yielding an MSE of 0.00114, a PSNR of 29.6 dB, and an SSIM of 0.956 at x16 acceleration factor.
arXiv Detail & Related papers (2021-03-04T10:45:01Z) - Accurate Prostate Cancer Detection and Segmentation on Biparametric MRI
using Non-local Mask R-CNN with Histopathological Ground Truth [0.0]
We developed deep machine learning models to improve the detection and segmentation of intraprostatic lesions on bp-MRI.
Models were trained using MRI-based delineations with prostatectomy-based delineations.
With prostatectomy-based delineations, the non-local Mask R-CNN with fine-tuning and self-training significantly improved all evaluation metrics.
arXiv Detail & Related papers (2020-10-28T21:07:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.