Analysis of clinical, dosimetric and radiomic features for predicting local failure after stereotactic radiotherapy of brain metastases in malignant melanoma
- URL: http://arxiv.org/abs/2405.20825v2
- Date: Thu, 22 May 2025 07:13:16 GMT
- Title: Analysis of clinical, dosimetric and radiomic features for predicting local failure after stereotactic radiotherapy of brain metastases in malignant melanoma
- Authors: Nanna E. Hartong, Ilias Sachpazidis, Oliver Blanck, Lucas Etzel, Jan C. Peeken, Stephanie E. Combs, Horst Urbach, Maxim Zaitsev, Dimos Baltas, Ilinca Popp, Anca-Ligia Grosu, Tobias Fechter,
- Abstract summary: This study aimed to predict lesion-specific outcomes after stereotactic radiotherapy in patients with brain metastases from malignant melanoma.<n>RF-based models outperformed the clinical model, while dosimetric data alone were not predictive.
- Score: 1.813829334805839
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: This study aimed to predict lesion-specific outcomes after stereotactic radiotherapy (SRT) in patients with brain metastases from malignant melanoma (MBM), using clinical, dosimetric pretherapeutic MRI data. Methods: In this multicenter retrospective study, 517 MBM from 130 patients treated with single-fraction or hypofractionated SRT across three centers were analyzed. From contrast-enhanced T1-weighted MRI, 1576 radiomic features (RF) were extracted per lesion - 788 from the gross tumor volume (GTV), 788 from a 3 mm peritumoral margin. Clinical data, radiation dose and RF from one center were used for feature selection and model development via nested cross-validation; external validation was performed using the other two centers. Results: Local failure occurred in 72 of 517 lesions (13.9%). Predictive models based on clinical data (model 1), RF (model 2), or both (model 3) achieved c-indices of 0.60 +/- 0.15, 0.65 +/- 0.11, and 0.65 +/- 0.12. RF-based models outperformed the clinical model, while dosimetric data alone were not predictive. Most predictive RF came from the peritumoral margin (92%) vs. GTV (76%). On the first external dataset, all models performed similarly (c-index: 0.60-0.63), but showed poor generalization on the second (c-index < 0.50), likely due to differences in patient characteristics and imaging protocols. Conclusions: Information extracted from pretherapeutic MRI, particularly from the peritumoral area, can support accurate prediction of lesion-specific outcomes after SRT in MBM. When combined with clinical data, these imaging-derived markers offer valuable prognostic insights. However, generalizability remains challenging by heterogeneity in patient populations and MRI protocols.
Related papers
- The added value for MRI radiomics and deep-learning for glioblastoma prognostication compared to clinical and molecular information [0.0]
Radiomics shows promise in characterizing glioblastoma, but its added value has yet to be proven.<n>This study assessed the added value of conventional radiomics (CR) and deep learning (DL) MRI radiomics for glioblastoma prognosis.
arXiv Detail & Related papers (2025-07-21T12:27:07Z) - Multimodal MRI-Ultrasound AI for Prostate Cancer Detection Outperforms Radiologist MRI Interpretation: A Multi-Center Study [2.493694664727448]
Pre-biopsy magnetic resonance imaging (MRI) is increasingly used to target suspicious prostate lesions.<n>MRI-detected lesions must still be mapped to transrectal ultrasound (TRUS) images during biopsy, which results in missing clinically significant prostate cancer (CsPCa)<n>This study systematically evaluates a multimodal AI framework integrating MRI and TRUS image sequences to enhance CsPCa identification.
arXiv Detail & Related papers (2025-01-31T20:04:20Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
The BraTS-MEN-RT challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs.
Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space.
Target volume annotations adhere to established radiotherapy planning protocols.
arXiv Detail & Related papers (2024-05-28T17:25:43Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Magnetic resonance delta radiomics to track radiation response in lung
tumors receiving stereotactic MRI-guided radiotherapy [0.0]
We explore the potential of delta radiomics from on-treatment magnetic resonance (MR) imaging to track radiation dose response.
Delta radiomics were correlated with radiation dose delivery and assessed for tumor control and survival.
Skewness, Elongation, and Flatness were significantly associated with local recurrence-free survival.
arXiv Detail & Related papers (2024-02-23T18:00:44Z) - Classification of Radiologically Isolated Syndrome and Clinically
Isolated Syndrome with Machine-Learning Techniques [0.0]
The unanticipated detection by magnetic resonance imaging (MRI) in the brain of asymptomatic subjects of white matter lesions suggestive of multiple sclerosis (MS) has been named radiologically isolated syndrome (RIS)
Our objective was to use machine-learning classification methods to identify morphometric measures that help to discriminate patients with RIS from those with CIS.
arXiv Detail & Related papers (2024-01-24T08:49:50Z) - Recurrence-Free Survival Prediction for Anal Squamous Cell Carcinoma
Chemoradiotherapy using Planning CT-based Radiomics Model [5.485361086613949]
Approximately 30% of non-metastatic anal squamous cell carcinoma (A SCC) patients will experience recurrence after chemotherapy (CRT)
We developed a model leveraging information extracted from radiation pretreatment planning CT to predict recurrence-free survival (RFS) in A SCC patients after CRT.
arXiv Detail & Related papers (2023-09-05T20:22:26Z) - Brain Tumor Recurrence vs. Radiation Necrosis Classification and Patient
Survivability Prediction [0.0]
GBM is the most aggressive brain tumor in adults that has a short survival rate even after aggressive treatment with surgery and radiation therapy.
The changes on magnetic resonance imaging (MRI) for patients with GBM after radiotherapy are indicative of radiation-induced necrosis (RN) or recurrent brain tumor (rBT)
This study proposes computational modeling with statistically rigorous repeated random sub-sampling to balance the subset sample size for rBT and RN classification.
arXiv Detail & Related papers (2023-06-05T21:39:11Z) - Risk Classification of Brain Metastases via Radiomics, Delta-Radiomics
and Machine Learning [7.165205048529115]
We hypothesized that using radiomics and machine learning (ML), metastases at high risk for subsequent progression could be identified during follow-up prior to the onset of significant tumor growth.
The classification is realized via the maximum-relevance minimal-redundancy (MRMR) technique and support vector machines (SVM)
The results indicate that risk stratification of BM based on radiomics and machine learning during post-SRT follow-up is possible with good accuracy and should be further pursued to personalize and improve post-SRT follow-up.
arXiv Detail & Related papers (2023-02-17T10:55:18Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Modeling of Textures to Predict Immune Cell Status and Survival of Brain
Tumour Patients [4.542148087324063]
Radiomics has shown a capability for different types of cancers such as glioma to predict the clinical outcome.
We aim to predict the immune marker status (low versus high) and overall survival for glioma patients using deep radiomic features (DRFs)
Our experiments are performed to assess the relationship between the proposed DRFs, three immune cell markers (Macrophage M1, Neutrophils and T Cells Follicular Helper) and measure their association with overall survival.
arXiv Detail & Related papers (2022-06-04T03:52:12Z) - Domain Adaptation of Automated Treatment Planning from Computed
Tomography to Magnetic Resonance [0.5599792629509229]
We created highly acceptable Magnetic resonance only treatment plans using a CT-trained machine learning model.
clinically significant dose deviations from the CT based plans were observed.
arXiv Detail & Related papers (2022-03-07T18:18:00Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z) - Accurate Prostate Cancer Detection and Segmentation on Biparametric MRI
using Non-local Mask R-CNN with Histopathological Ground Truth [0.0]
We developed deep machine learning models to improve the detection and segmentation of intraprostatic lesions on bp-MRI.
Models were trained using MRI-based delineations with prostatectomy-based delineations.
With prostatectomy-based delineations, the non-local Mask R-CNN with fine-tuning and self-training significantly improved all evaluation metrics.
arXiv Detail & Related papers (2020-10-28T21:07:09Z) - A multicenter study on radiomic features from T$_2$-weighted images of a
customized MR pelvic phantom setting the basis for robust radiomic models in
clinics [47.187609203210705]
2D and 3D T$$-weighted images of a pelvic phantom were acquired on three scanners.
repeatability and repositioning of radiomic features were assessed.
arXiv Detail & Related papers (2020-05-14T09:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.