Effect of Adaptive Communication Support on LLM-powered Human-Robot Collaboration
- URL: http://arxiv.org/abs/2412.06808v2
- Date: Tue, 11 Feb 2025 18:52:51 GMT
- Title: Effect of Adaptive Communication Support on LLM-powered Human-Robot Collaboration
- Authors: Shipeng Liu, FNU Shrutika, Boshen Zhang, Zhehui Huang, Gaurav Sukhatme, Feifei Qian,
- Abstract summary: Human-Robot Teaming Framework with Multi-Modal Language feedback (HRT-ML)
HRT-ML framework includes two core modules: a Coordinator for high-level, low-frequency strategic guidance, and a Manager for subtask-specific, high-frequency instructions.
- Score: 2.4552201513604093
- License:
- Abstract: Effective human-robot collaboration requires robot to adopt their roles and levels of support based on human needs, task requirements, and complexity. Traditional human-robot teaming often relies on a pre-determined robot communication scheme, restricting teamwork adaptability in complex tasks. Leveraging strong communication capabilities of Large Language Models (LLMs), we propose a Human-Robot Teaming Framework with Multi-Modal Language feedback (HRT-ML), a framework designed to enhance human-robot interaction by adjusting the frequency and content of language-based feedback. HRT-ML framework includes two core modules: a Coordinator for high-level, low-frequency strategic guidance, and a Manager for subtask-specific, high-frequency instructions, enabling passive and active interactions with human teammates. To assess the impact of language feedback in collaborative scenarios, we conducted experiments in an enhanced Overcooked environment with varying levels of task complexity (easy, medium, hard) and feedback frequency (inactive, passive, active, superactive). Our results show that as task complexity increases relative to human capabilities, human teammates exhibited a stronger preference towards robotic agents that can offer frequent, proactive support. However, when task complexities exceed the LLM's capacity, noisy and inaccurate feedback from superactive robotic agents can instead hinder team performance, as it requires human teammates to increase their effort to interpret and respond to a large number of communications, with limited performance return. Our results offer a general principle for robotic agents to dynamically adjust their levels and frequencies of communications to work seamlessly with humans and achieve improved teaming performance.
Related papers
- Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gym is a framework enabling asynchronous, tripartite interaction among agents, humans, and task environments.
We instantiate Co-Gym with three representative tasks in both simulated and real-world conditions.
Our findings reveal that collaborative agents consistently outperform their fully autonomous counterparts in task performance.
arXiv Detail & Related papers (2024-12-20T09:21:15Z) - Simulating User Agents for Embodied Conversational-AI [9.402740034754455]
We build a large language model (LLM)-based user agent that can simulate user behavior during interactions with an embodied agent.
We evaluate our user agent's ability to generate human-like behaviors by comparing its simulated dialogues with the TEACh dataset.
arXiv Detail & Related papers (2024-10-31T00:56:08Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.
A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.
The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
Theory of Mind (ToM) significantly impacts human collaboration and communication as a crucial capability to understand others.
Mutual Theory of Mind (MToM) arises when AI agents with ToM capability collaborate with humans.
We find that the agent's ToM capability does not significantly impact team performance but enhances human understanding of the agent.
arXiv Detail & Related papers (2024-09-13T13:19:48Z) - CAMON: Cooperative Agents for Multi-Object Navigation with LLM-based Conversations [22.79813240034754]
Large language models (LLMs) have exhibited remarkable comprehension and planning abilities.
This paper proposes a framework for decentralized multi-agent navigation, leveraging LLM-enabled communication and collaboration.
arXiv Detail & Related papers (2024-06-30T09:14:33Z) - LIT: Large Language Model Driven Intention Tracking for Proactive Human-Robot Collaboration -- A Robot Sous-Chef Application [4.519544934630495]
Large Language Models (LLM) and Vision Language Models (VLM) enable robots to ground natural language prompts into control actions.
We propose Language-driven Intention Tracking (LIT) to model the human user's long-term behavior and to predict the next human intention to guide the robot for proactive collaboration.
arXiv Detail & Related papers (2024-06-19T19:18:40Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - A Unified Architecture for Dynamic Role Allocation and Collaborative
Task Planning in Mixed Human-Robot Teams [0.0]
We present a novel architecture for dynamic role allocation and collaborative task planning in a mixed human-robot team of arbitrary size.
The architecture capitalizes on a centralized reactive and modular task-agnostic planning method based on Behavior Trees (BTs)
Different metrics used as MILP cost allow the architecture to favor various aspects of the collaboration.
arXiv Detail & Related papers (2023-01-19T12:30:56Z) - Increased Complexity of a Human-Robot Collaborative Task May Increase
the Need for a Socially Competent Robot [0.0]
This study investigates how task complexity affects human perception and acceptance of their robot partner.
We propose a human-based robot control model for obstacle avoidance that can account for the leader-follower dynamics.
arXiv Detail & Related papers (2022-07-11T11:43:27Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.