論文の概要: Geological and Well prior assisted full waveform inversion using conditional diffusion models
- arxiv url: http://arxiv.org/abs/2412.06959v1
- Date: Mon, 09 Dec 2024 20:05:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:35:42.582633
- Title: Geological and Well prior assisted full waveform inversion using conditional diffusion models
- Title(参考訳): 条件拡散モデルを用いた地質・ウェル先行支援フルウェーブフォームインバージョン
- Authors: Fu Wang, Xinquan Huang, Tariq Alkhalifah,
- Abstract要約: フルウェーブフォーム・インバージョン(FWI)は、不適切な地震観測のためにしばしば困難に直面し、帯域制限と地質学的に不正確なインバージョン結果をもたらす。
本研究では, 条件付き拡散モデルを用いて, 地質学的クラスと情報的事前支援FWIを提案する。
本手法は,FWIにマルチモーダル情報をシームレスに統合し,データの適合性と地質学および地球物理の整合性を同時に達成する。
- 参考スコア(独自算出の注目度): 4.2193475197905705
- License:
- Abstract: Full waveform inversion (FWI) often faces challenges due to inadequate seismic observations, resulting in band-limited and geologically inaccurate inversion results. Incorporating prior information from potential velocity distributions, well-log information, and our geological knowledge and expectations can significantly improve FWI convergence to a realistic model. While diffusion-regularized FWI has shown improved performance compared to conventional FWI by incorporating the velocity distribution prior, it can benefit even more by incorporating well-log information and other geological knowledge priors. To leverage this fact, we propose a geological class and well-information prior-assisted FWI using conditional diffusion models. This method seamlessly integrates multi-modal information into FWI, simultaneously achieving data fitting and universal geologic and geophysics prior matching, which is often not achieved with traditional regularization methods. Specifically, we propose to combine conditional diffusion models with FWI, where we integrate well-log data and geological class conditions into these conditional diffusion models using classifier-free guidance for multi-modal prior matching beyond the original velocity distribution prior. Numerical experiments on the OpenFWI datasets and field marine data demonstrate the effectiveness of our method compared to conventional FWI and the unconditional diffusion-regularized FWI.
- Abstract(参考訳): フルウェーブフォーム・インバージョン(FWI)は、不適切な地震観測のためにしばしば困難に直面し、帯域制限と地質学的に不正確なインバージョン結果をもたらす。
電位速度分布,ウェルログ情報,地質知識および期待情報から事前情報を組み込むことで,FWIの収束性を大幅に向上させることができる。
拡散規則化FWIは, 速度分布を予め組み込むことで従来のFWIよりも性能が向上しているのに対し, ウェルログ情報やその他の地質学的知識を組み込むことで, さらに恩恵を受けることができる。
この事実を活用するために,条件付き拡散モデルを用いた地質学クラスと情報事前支援FWIを提案する。
本手法はFWIにマルチモーダル情報をシームレスに統合し, 従来の正規化手法では得られないような, データの適合性, 普遍的な地質学的・物理的マッチングを同時に達成する。
具体的には、条件付き拡散モデルとFWIを組み合わせることを提案し、これらの条件付き拡散モデルに、元の速度分布を超えたマルチモーダル事前マッチングのための分類器なしガイダンスを用いて、よくログされたデータと地質的なクラス条件を統合する。
OpenFWIデータセットとフィールド海洋データに関する数値実験により,従来のFWIと非条件拡散規則化FWIと比較して,本手法の有効性が示された。
関連論文リスト
- PreAdaptFWI: Pretrained-Based Adaptive Residual Learning for Full-Waveform Inversion Without Dataset Dependency [8.719356558714246]
フルウェーブフォーム・インバージョン(Full-waveform Inversion、FWI)は、地震データを用いて地下媒体の物理パラメータを反転させる手法である。
異常な性質のため、FWIは局所的なミニマに閉じ込められやすい。
ニューラルネットワークとFWIを組み合わせることで、インバージョンプロセスの安定化が試みられている。
論文 参考訳(メタデータ) (2025-02-17T15:30:17Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
条件付き拡散モデルは現代の画像合成の基礎となり、計算生物学や強化学習などの分野に広く応用されている。
経験的成功にもかかわらず、条件拡散モデルの理論はほとんど欠落している。
本稿では,条件拡散モデルを用いた分布推定の急激な統計的理論を提示することにより,ギャップを埋める。
論文 参考訳(メタデータ) (2024-03-18T17:08:24Z) - A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
C$2$TSDという条件拡散フレームワークを導入する。
実世界の3つのデータセットに対する我々の実験は、最先端のベースラインと比較して、我々のアプローチの優れた性能を示している。
論文 参考訳(メタデータ) (2024-02-18T11:59:04Z) - Controllable seismic velocity synthesis using generative diffusion models [4.2193475197905705]
本研究では, 地震波速度合成のための条件付き生成拡散モデルを提案する。
このアプローチは、予測された目標分布と密接に一致する地震波速度の生成を可能にする。
OpenFWIデータセット上での拡散モデルのトレーニングにより,本手法の柔軟性と有効性を示す。
論文 参考訳(メタデータ) (2024-02-09T09:41:26Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - A prior regularized full waveform inversion using generative diffusion
models [0.5156484100374059]
フルウェーブフォームインバージョン(FWI)は高分解能地下モデル推定を提供する可能性がある。
観測の限界、例えば、地域雑音、限られたショットや受信機、帯域制限データなどにより、FWIで所望の高解像度モデルを得るのは難しい。
生成拡散モデルにより正規化されたFWIの新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-06-22T10:10:34Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - Information-Theoretic Diffusion [18.356162596599436]
拡散モデルのデノイングは密度モデリングや画像生成において大きな進歩をもたらした。
情報理論における古典的な結果にインスパイアされた拡散モデルのための新しい数学的基礎を導入する。
論文 参考訳(メタデータ) (2023-02-07T23:03:07Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - PriorGrad: Improving Conditional Denoising Diffusion Models with
Data-Driven Adaptive Prior [103.00403682863427]
条件拡散モデルの効率を改善するために, PreGrad を提案する。
PriorGradはデータとパラメータの効率を向上し、品質を向上する。
論文 参考訳(メタデータ) (2021-06-11T14:04:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。