論文の概要: Multi-Objective Communication Optimization for Temporal Continuity in Dynamic Vehicular Networks
- arxiv url: http://arxiv.org/abs/2412.07011v1
- Date: Sat, 30 Nov 2024 08:55:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-15 08:00:22.201013
- Title: Multi-Objective Communication Optimization for Temporal Continuity in Dynamic Vehicular Networks
- Title(参考訳): 動的ベクトルネットワークにおける時間連続性のための多目的通信最適化
- Authors: Weian Guo, Wuzhao Li, Li Li, Lun Zhang, Dongyang Li,
- Abstract要約: Vehicular Ad-hoc Networks (VANETs) は、高モビリティ、時間変化のあるチャネル条件、頻繁なネットワークディスラプションを特徴とする、非常にダイナミックな環境で運用されている。
本稿では,VANET のための時間対応多目的ロバスト最適化フレームワークを提案する。
通信遅延、スループット、信頼性を同時に最適化し、急速に変化する条件下で安定した一貫した通信経路を確保する。
- 参考スコア(独自算出の注目度): 7.951541004150428
- License:
- Abstract: Vehicular Ad-hoc Networks (VANETs) operate in highly dynamic environments characterized by high mobility, time-varying channel conditions, and frequent network disruptions. Addressing these challenges, this paper presents a novel temporal-aware multi-objective robust optimization framework, which for the first time formally incorporates temporal continuity into the optimization of dynamic multi-hop VANETs. The proposed framework simultaneously optimizes communication delay, throughput, and reliability, ensuring stable and consistent communication paths under rapidly changing conditions. A robust optimization model is formulated to mitigate performance degradation caused by uncertainties in vehicular density and channel fluctuations. To solve the optimization problem, an enhanced Non-dominated Sorting Genetic Algorithm II (NSGA-II) is developed, integrating dynamic encoding, elite inheritance, and adaptive constraint handling to efficiently balance trade-offs among conflicting objectives. Simulation results demonstrate that the proposed framework achieves significant improvements in reliability, delay reduction, and throughput enhancement, while temporal continuity effectively stabilizes communication paths over time. This work provides a pioneering and comprehensive solution for optimizing VANET communication, offering critical insights for robust and efficient strategies in intelligent transportation systems.
- Abstract(参考訳): Vehicular Ad-hoc Networks (VANETs) は、高モビリティ、時間変化のあるチャネル条件、頻繁なネットワークディスラプションを特徴とする、非常にダイナミックな環境で運用されている。
これらの課題に対処するため,本稿では,動的マルチホップVANETの最適化に時間的連続性を初めて組み込んだ,時間的対応型多目的ロバスト最適化フレームワークを提案する。
提案フレームワークは通信遅延,スループット,信頼性を同時に最適化し,急速に変化する条件下で安定かつ一貫した通信経路を確保する。
車両密度とチャネル変動の不確実性に起因する性能劣化を軽減するために,ロバスト最適化モデルを定式化した。
この最適化問題を解決するために、動的エンコーディング、エリート継承、適応制約処理を統合し、競合する目的間のトレードオフを効率的にバランスする改良された非支配的ソーティング遺伝的アルゴリズムII(NSGA-II)を開発した。
シミュレーションの結果,提案フレームワークは信頼性,遅延低減,スループット向上の大幅な向上を実現し,時間的連続性は通信経路を効果的に安定化させることを示した。
この作業はVANET通信を最適化するための先駆的で包括的なソリューションを提供し、インテリジェントトランスポートシステムにおける堅牢で効率的な戦略に対する重要な洞察を提供する。
関連論文リスト
- DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
本稿では、無線通信ネットワークの異なる状態変化に対応するために、カスタマイズされた無線ネットワークインテント(WNI-G)モデルを提案する。
大規模シミュレーションにより、動的通信システムにおけるスペクトル効率と従来のDRLモデルの変動の安定性が向上する。
論文 参考訳(メタデータ) (2024-10-18T14:04:38Z) - Scalable Multi-Objective Optimization for Robust Traffic Signal Control in Uncertain Environments [7.504173535502228]
本稿では,動的かつ不確実な都市環境におけるロバストな交通信号制御のための,スケーラブルな多目的最適化手法を提案する。
都市交通の不確実性に対処する適応ハイブリッド多目的最適化アルゴリズム(AHMOA)を提案する。
シミュレーションはマンハッタン、パリ、サンパウロ、イスタンブールなど様々な都市で行われている。
論文 参考訳(メタデータ) (2024-09-20T10:42:16Z) - CARIn: Constraint-Aware and Responsive Inference on Heterogeneous Devices for Single- and Multi-DNN Workloads [4.556037016746581]
本稿では,モバイルデバイス上でのディープニューラルネットワーク(DNN)の実行を最適化する上での課題に対処する。
CARInはシングルDNNアプリケーションとマルチDNNアプリケーションの両方を最適化するための新しいフレームワークである。
現状のOODInフレームワークとは対照的に,単一モデルの設計では1.92倍,最大10.69倍となる。
論文 参考訳(メタデータ) (2024-09-02T09:18:11Z) - FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
フェデレートラーニング(FL)は、プライバシ保護機械学習のトレーニングパラダイムとして広く採用されている。
本稿では、非同期更新を適応的フェデレーション最適化と証明可能な保証に組み込む新しい手法であるFADASについて紹介する。
提案アルゴリズムの収束率を厳格に確立し,FADASが他の非同期FLベースラインよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-07-25T20:02:57Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Learning for Semantic Knowledge Base-Guided Online Feature Transmission
in Dynamic Channels [41.59960455142914]
本稿では,エンドツーエンド通信システムにおける動的チャネル条件とデバイスモビリティの課題に対処する,オンライン最適化フレームワークを提案する。
提案手法は,多レベル特徴伝達を駆動するための意味的知識ベースを活用することによって,既存の手法に基づいている。
オンライン最適化の課題を解決するために,リアルタイム意思決定のための報酬関数を慎重に設計した,ソフトアクターに基づく深層強化学習システムの設計を行った。
論文 参考訳(メタデータ) (2023-11-30T07:35:56Z) - Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer
Optimization Framework [47.57576667752444]
オープンRAN(O-RAN)におけるインテリジェントステアリングアプリケーションを実現するために,フロースプリット分布,渋滞制御,スケジューリング(JFCS)を共同で最適化する。
i) 適切な無線ユニットへのトラフィックを効率よく、適応的に誘導する新しいJFCSフレームワークを提案し、i) 強化学習、内近似、二項探索に基づく低複雑さアルゴリズムを開発し、異なる時間スケールでJFCS問題を効果的に解決し、iv) 厳密な理論的性能結果を分析し、遅延とユーティリティ最適化のトレードオフを改善するためのスケーリング係数が存在することを示す。
論文 参考訳(メタデータ) (2023-02-06T11:37:06Z) - Semantic Communication Enabling Robust Edge Intelligence for
Time-Critical IoT Applications [87.05763097471487]
本稿では、時間クリティカルなIoTアプリケーションのためのセマンティック通信を用いて、堅牢なエッジインテリジェンスを設計することを目的とする。
本稿では,画像DCT係数が推定精度に与える影響を解析し,オフロードのためのチャネル非依存の有効性符号化を提案する。
論文 参考訳(メタデータ) (2022-11-24T20:13:17Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。