Generative AI Impact on Labor Market: Analyzing ChatGPT's Demand in Job Advertisements
- URL: http://arxiv.org/abs/2412.07042v1
- Date: Mon, 09 Dec 2024 23:03:20 GMT
- Title: Generative AI Impact on Labor Market: Analyzing ChatGPT's Demand in Job Advertisements
- Authors: Mahdi Ahmadi, Neda Khosh Kheslat, Adebola Akintomide,
- Abstract summary: This study examines the demand for ChatGPT-related skills in the U.S. labor market.
Using text mining and topic modeling techniques, we extracted and analyzed the Gen AI-related skills that employers are hiring for.
- Score: 0.9886108751871759
- License:
- Abstract: The rapid advancement of Generative AI (Gen AI) technologies, particularly tools like ChatGPT, is significantly impacting the labor market by reshaping job roles and skill requirements. This study examines the demand for ChatGPT-related skills in the U.S. labor market by analyzing job advertisements collected from major job platforms between May and December 2023. Using text mining and topic modeling techniques, we extracted and analyzed the Gen AI-related skills that employers are hiring for. Our analysis identified five distinct ChatGPT-related skill sets: general familiarity, creative content generation, marketing, advanced functionalities (such as prompt engineering), and product development. In addition, the study provides insights into job attributes such as occupation titles, degree requirements, salary ranges, and other relevant job characteristics. These findings highlight the increasing integration of Gen AI across various industries, emphasizing the growing need for both foundational knowledge and advanced technical skills. The study offers valuable insights into the evolving demands of the labor market, as employers seek candidates equipped to leverage generative AI tools to improve productivity, streamline processes, and drive innovation.
Related papers
- Comparative Analysis of Encoder-Based NER and Large Language Models for Skill Extraction from Russian Job Vacancies [0.0]
This study compares Named Entity Recognition methods based on encoders with Large Language Models (LLMs) for extracting skills from Russian job vacancies.
Results indicate that traditional NER models, especially DeepPavlov RuBERT NER tuned, outperform LLMs across various metrics including accuracy, precision, recall, and inference time.
This research contributes to the field of natural language processing (NLP) and its application in the labor market, particularly in non-English contexts.
arXiv Detail & Related papers (2024-07-29T09:08:40Z) - Towards the Terminator Economy: Assessing Job Exposure to AI through LLMs [10.844598404826355]
One-third of U.S. employment is highly exposed to AI, primarily in high-skill jobs.
This exposure correlates positively with employment and wage growth from 2019 to 2023.
arXiv Detail & Related papers (2024-07-27T08:14:18Z) - Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking [59.87055275344965]
Job-SDF is a dataset designed to train and benchmark job-skill demand forecasting models.
Based on 10.35 million public job advertisements collected from major online recruitment platforms in China between 2021 and 2023.
Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels.
arXiv Detail & Related papers (2024-06-17T07:22:51Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal.
We identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI.
arXiv Detail & Related papers (2024-04-17T02:57:42Z) - "Generate" the Future of Work through AI: Empirical Evidence from Online Labor Markets [4.955822723273599]
Large Language Model (LLM) based generative AI, such as ChatGPT, is considered the first generation of Artificial General Intelligence (AGI)
Our paper offers crucial insights into AI's influence on labor markets and individuals' reactions.
arXiv Detail & Related papers (2023-08-09T19:45:00Z) - The Future of ChatGPT-enabled Labor Market: A Preliminary Study in China [22.120632047061235]
We study the future of ChatGPT-enabled labor market from the view of Human-AI Symbiosis instead of Human-AI Confrontation.
Results indicate that about 28% of occupations in the current labor market require ChatGPT-related skills.
Additional 45% occupations in the future will require ChatGPT-related skills.
arXiv Detail & Related papers (2023-04-14T06:56:35Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to
GPT-5 All You Need? [112.12974778019304]
generative AI (AIGC, a.k.a AI-generated content) has made headlines everywhere because of its ability to analyze and create text, images, and beyond.
In the era of AI transitioning from pure analysis to creation, it is worth noting that ChatGPT, with its most recent language model GPT-4, is just a tool out of numerous AIGC tasks.
This work focuses on the technological development of various AIGC tasks based on their output type, including text, images, videos, 3D content, etc.
arXiv Detail & Related papers (2023-03-21T10:09:47Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z) - Practical Skills Demand Forecasting via Representation Learning of
Temporal Dynamics [4.536775100566484]
Rapid technological innovation threatens to leave much of the global workforce behind.
Governments and markets must find ways to quicken the rate at which the supply of skills reacts to changes in demand.
This paper presents a pipeline which makes one-shot multi-step forecasts into the future using a decade of monthly skill demand observations.
arXiv Detail & Related papers (2022-05-18T04:02:55Z) - Discovering Generalizable Skills via Automated Generation of Diverse
Tasks [82.16392072211337]
We propose a method to discover generalizable skills via automated generation of a diverse set of tasks.
As opposed to prior work on unsupervised discovery of skills, our method pairs each skill with a unique task produced by a trainable task generator.
A task discriminator defined on the robot behaviors in the generated tasks is jointly trained to estimate the evidence lower bound of the diversity objective.
The learned skills can then be composed in a hierarchical reinforcement learning algorithm to solve unseen target tasks.
arXiv Detail & Related papers (2021-06-26T03:41:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.