論文の概要: Variational Quantum Algorithm for Constrained Topology Optimization in Quantum Scientific Computing
- arxiv url: http://arxiv.org/abs/2412.07099v2
- Date: Wed, 08 Jan 2025 02:16:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 16:10:19.423978
- Title: Variational Quantum Algorithm for Constrained Topology Optimization in Quantum Scientific Computing
- Title(参考訳): 量子科学計算における制約付き位相最適化のための変分量子アルゴリズム
- Authors: Jungin E. Kim, Jinhwan Sul, Yan Wang,
- Abstract要約: 量子絡み合いによる位相最適化のための新しい変分量子アルゴリズムを提案する。
このアルゴリズムはトラス構造やMesserschmitt-B"olkow-Blohmビームを含むコンプライアンス最小化問題で実証される。
- 参考スコア(独自算出の注目度): 3.6190123930006317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum scientific computing has emerged as a new paradigm to solve difficult scientific computing problems on quantum computers. One of them is topology optimization, which is computationally expensive because the combinatorial optimization problem and partial differential equations need to be solved simultaneously. In this paper, we propose a novel variational quantum algorithm for topology optimization through quantum entanglement. Two quantum registers are used to encode the optimal configurations and the solutions to physical constraints, respectively. The tasks of finding the optimal material configuration and solving the physical constraints are performed simultaneously in a single loop. A constraint encoding scheme is also proposed to incorporate volume and topology constraints in optimization. The gate complexity of the proposed quantum algorithm is analyzed. The theoretical lower bound of the success probability is obtained. The algorithm is demonstrated with compliance minimization problems including truss structures and Messerschmitt-B\"olkow-Blohm beams.
- Abstract(参考訳): 量子コンピューティングは、量子コンピュータ上で難しい科学計算問題を解決するための新しいパラダイムとして登場した。
その1つは位相最適化であり、組合せ最適化問題と偏微分方程式を同時に解く必要があるため、計算コストがかかる。
本稿では,量子エンタングルメントによる位相最適化のための新しい変分量子アルゴリズムを提案する。
最適構成と物理制約に対する解を符号化するために、2つの量子レジスタが使用される。
最適材料構成の探索と物理制約の解決を同時に1ループで行う。
また、最適化にボリュームとトポロジーの制約を組み込むための制約符号化スキームも提案されている。
提案する量子アルゴリズムのゲート複雑性を解析する。
成功確率の理論的下限を求める。
このアルゴリズムはトラス構造やMesserschmitt-B\"olkow-Blohmビームを含むコンプライアンス最小化問題で実証される。
関連論文リスト
- Feedback-Based Quantum Strategies for Constrained Combinatorial Optimization Problems [0.6554326244334868]
我々は、フィードバックベースの量子アルゴリズムフレームワークを拡張し、無効な設定(IC)制約と呼ばれるより広範な制約のクラスに対処する。
本稿では、スラック変数を必要とせずに直接IC制約に対処する、フィードバックベースの量子アルゴリズムに適した代替手法を提案する。
これらの方法はスラック変数の必要性を排除し、量子回路の深さと必要な量子ビットの数を大幅に削減する。
論文 参考訳(メタデータ) (2025-02-20T08:57:28Z) - Two-Step QAOA: Enhancing Quantum Optimization by Decomposing K-hot Constraints in QUBO Formulations [0.0]
Two-Step QAOAは、k-hotエンコーディングQUBO定式化の問題を分解することで、QAOAの有効性を向上させることを目的としている。
ソフト制約をハード制約に変換し、初期条件の生成を単純化する。
論文 参考訳(メタデータ) (2024-08-09T23:38:28Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
我々はこのプロトコルをバイアス場デジタルダイアバティック量子最適化(BF-DCQO)と呼ぶ。
私たちの純粋に量子的なアプローチは、古典的な変分量子アルゴリズムへの依存を排除します。
基底状態の成功確率のスケーリング改善を実現し、最大2桁まで増大する。
論文 参考訳(メタデータ) (2024-05-22T18:11:42Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
本稿では,変分量子アルゴリズム(VQA)の量子回路を分割し,並列トレーニングと実行を可能にする手法を提案する。
本稿では,この問題からの固有構造を同定可能な最適化問題に適用する。
我々は,本手法がより大きな問題に対処できるだけでなく,1つのスライスのみを用いてパラメータをトレーニングしながら,完全なVQAモデルを実行することもできることを示した。
論文 参考訳(メタデータ) (2023-04-06T12:52:29Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Enhancing Quantum Algorithms for Quadratic Unconstrained Binary Optimization via Integer Programming [0.0]
本研究では,最適化のための量子および古典的手法の可能性を統合する。
線形緩和により問題のサイズを小さくし、最小サイズの量子マシンで問題を処理できるようにした。
実量子ハードウェアの計算結果を多数提示する。
論文 参考訳(メタデータ) (2023-02-10T20:12:53Z) - Fermionic Quantum Approximate Optimization Algorithm [11.00442581946026]
制約付き最適化問題を解くためのフェルミオン量子近似最適化アルゴリズム(FQAOA)を提案する。
FQAOAは、フェルミオン粒子数保存を用いて、QAOAを通して本質的にそれらを強制する制約問題に対処する。
制約付きハミルトニアン問題に対して、運転者ハミルトニアンを設計するための体系的なガイドラインを提供する。
論文 参考訳(メタデータ) (2023-01-25T18:36:58Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Constrained Quantum Optimization for Extractive Summarization on a
Trapped-ion Quantum Computer [13.528362112761805]
本稿では,量子ハードウェアの制約を保存する量子最適化アルゴリズムの,これまでで最大の実行方法を示す。
我々は、最大20キュービットと2キュービットゲート深さ最大159の量子進化を制限するXY-QAOA回路を実行する。
本稿では,アルゴリズムのトレードオフと,短期量子ハードウェア上での実行に対する影響について論じる。
論文 参考訳(メタデータ) (2022-06-13T16:21:04Z) - Efficient Use of Quantum Linear System Algorithms in Interior Point
Methods for Linear Optimization [0.0]
線形最適化問題を解くために、非現実的な量子内点法を開発した。
また、量子ソルバの過度な時間なしで、反復リファインメントによって正確な解を得る方法についても論じる。
論文 参考訳(メタデータ) (2022-05-02T21:30:56Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
本稿では,一般に局所的に制約された最適化問題に対する量子インスパイアされたテンソルネットワークに基づくアルゴリズムを提案する。
我々のアルゴリズムは、興味のある問題に対してハミルトニアンを構築し、量子問題に効果的にマッピングする。
本研究は,本手法の有効性と応用の可能性を示すものである。
論文 参考訳(メタデータ) (2022-03-29T05:44:07Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
制約のないバイナリ最適化の問題を解決するために,光コヒーレントIsingマシンにヒントを得たアルゴリズムを提案する。
提案アルゴリズムを既存のPUBOアルゴリズムに対してベンチマークし,その優れた性能を観察する。
タンパク質の折り畳み問題や量子化学問題へのアルゴリズムの適用は、PUBO問題による電子構造問題の近似の欠点に光を当てる。
論文 参考訳(メタデータ) (2021-06-24T16:39:31Z) - Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms [0.0]
分割・対数手法を用いて、元の問題を小さな問題の集合に還元する。
この手法は任意のQUBOインスタンスに適用でき、全古典的またはハイブリッドな量子古典的アプローチにつながる。
論文 参考訳(メタデータ) (2021-01-19T19:00:40Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Quantum approximate algorithm for NP optimization problems with
constraints [12.294570891467604]
本稿では,異なる制約型を等式,線形不等式,任意の形式に定式化する。
そこで本研究では,NP最適化問題の解法としてQAOAフレームワークに適合する制約符号化方式を提案する。
提案手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-02-01T04:45:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。