論文の概要: Robust Feature Engineering Techniques for Designing Efficient Motor Imagery-Based BCI-Systems
- arxiv url: http://arxiv.org/abs/2412.07175v1
- Date: Tue, 10 Dec 2024 04:17:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:37:58.155368
- Title: Robust Feature Engineering Techniques for Designing Efficient Motor Imagery-Based BCI-Systems
- Title(参考訳): 効率的なモータ画像ベースBCIシステム設計のためのロバスト特徴工学技術
- Authors: Syed Saim Gardezi, Soyiba Jawed, Mahnoor Khan, Muneeba Bukhari, Rizwan Ahmed Khan,
- Abstract要約: この研究は、MI Limb EEGデータセットの詳細な分析を提供する。
神経リハビリテーションのためのシンプルで費用効率の良い信頼性の高いBCIシステムを設計・開発するのに役立つだろう。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A multitude of individuals across the globe grapple with motor disabilities. Neural prosthetics utilizing Brain-Computer Interface (BCI) technology exhibit promise for improving motor rehabilitation outcomes. The intricate nature of EEG data poses a significant hurdle for current BCI systems. Recently, a qualitative repository of EEG signals tied to both upper and lower limb execution of motor and motor imagery tasks has been unveiled. Despite this, the productivity of the Machine Learning (ML) Models that were trained on this dataset was alarmingly deficient, and the evaluation framework seemed insufficient. To enhance outcomes, robust feature engineering (signal processing) methodologies are implemented. A collection of time domain, frequency domain, and wavelet-derived features was obtained from 16-channel EEG signals, and the Maximum Relevance Minimum Redundancy (MRMR) approach was employed to identify the four most significant features. For classification K Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Na\"ive Bayes (NB) models were implemented with these selected features, evaluating their effectiveness through metrics such as testing accuracy, precision, recall, and F1 Score. By leveraging SVM with a Gaussian Kernel, a remarkable maximum testing accuracy of 92.50% for motor activities and 95.48% for imagery activities is achieved. These results are notably more dependable and gratifying compared to the previous study, where the peak accuracy was recorded at 74.36%. This research work provides an in-depth analysis of the MI Limb EEG dataset and it will help in designing and developing simple, cost-effective and reliable BCI systems for neuro-rehabilitation.
- Abstract(参考訳): 世界中の多数の個人が運動障害に悩まされています。
Brain-Computer Interface (BCI) 技術を利用した神経義肢は、運動療法の結果を改善することを約束する。
脳波データの複雑な性質は、現在のBCIシステムにとって大きなハードルとなっている。
近年, 上肢と下肢の両方に結合した脳波信号の定性的蓄積が明らかになってきた。
それにもかかわらず、このデータセットでトレーニングされた機械学習(ML)モデルの生産性は驚くほど不十分であり、評価フレームワークは不十分であるように思われた。
結果を高めるために、ロバストな特徴工学(手動処理)手法が実装されている。
16チャンネルの脳波信号から時間領域,周波数領域,ウェーブレット由来の特徴の収集を行い,4つの重要な特徴の同定にMRMRを用いた。
KN(Nearest Neighbors)、SVM(Support Vector Machine)、DT(Decision Tree)、NB(Na\\"ive Bayes)モデルをこれらの特徴で実装し、精度、精度、リコール、F1スコアなどの測定値を用いて評価した。
ガウスカーネルでSVMを活用することで、モーターアクティビティで92.50%、画像アクティビティで95.48%の驚くべき最大テスト精度が達成される。
これらの結果は、ピーク精度を74.36%と記録した以前の研究と比べて、特に信頼性が高く満足度が高い。
この研究はMI Limb EEGデータセットの詳細な分析を提供し、神経リハビリテーションのためのシンプルで費用効率のよい信頼性の高いBCIシステムを設計・開発するのに役立ちます。
関連論文リスト
- An AI-Driven Live Systematic Reviews in the Brain-Heart Interconnectome: Minimizing Research Waste and Advancing Evidence Synthesis [29.81784450632149]
我々はブレイン・ハード・インターコネクトーム(BHI)ドメインの体系的レビューを強化するAI駆動システムを開発した。
このシステムは、PICOS(Population, Intervention, Comparator, Outcome, and Study Design)の自動検出、ベクトル埋め込みを用いたセマンティック検索、グラフベースのクエリ、トピックモデリングを統合している。
このシステムはリアルタイムのアップデートを提供し、リビングデータベースによる研究の無駄を減らし、ダッシュボードと対話型AIを備えた対話型インターフェースを提供する。
論文 参考訳(メタデータ) (2025-01-25T03:51:07Z) - CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
交互注意(CEReBrO)を用いた脳振動の表現のための圧縮法について紹介する。
トークン化方式は、チャネルごとのパッチで脳波信号を表現します。
本研究では,チャネル内時間的ダイナミックスとチャネル間空間的相関を共同でモデル化し,通常の自己アテンションに比べて6倍少ないメモリで2倍の速度向上を実現するための注意機構を提案する。
論文 参考訳(メタデータ) (2025-01-18T21:44:38Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - 3D-CLMI: A Motor Imagery EEG Classification Model via Fusion of 3D-CNN
and LSTM with Attention [0.174048653626208]
本稿では,3次元畳み込みニューラルネットワーク(CNN)と長期記憶ネットワーク(LSTM)を組み合わせて運動画像(MI)信号を分類するモデルを提案する。
実験の結果、このモデルは、BCIコンペティションIVデータセット2aの分類精度92.7%、F1スコア0.91に達した。
このモデルにより、ユーザの運動像意図の分類精度が大幅に向上し、自律走行車や医療リハビリテーションといった新興分野における脳-コンピュータインタフェースの応用可能性が改善された。
論文 参考訳(メタデータ) (2023-12-20T03:38:24Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - Classification of Upper Arm Movements from EEG signals using Machine
Learning with ICA Analysis [0.0]
本稿では,多層パーセプトロンニューラルネットワークを用いて,左右の動作を識別する独自のアルゴリズムを提案する。
不要信号の干渉は、アルゴリズムの性能に影響を与える脳波信号を汚染する。
論文 参考訳(メタデータ) (2021-07-18T18:56:28Z) - Functional Magnetic Resonance Imaging data augmentation through
conditional ICA [44.483210864902304]
本稿では,高速機能型磁気共鳴イメージング(fMRI)データ拡張技術である条件独立成分分析(Conditional ICA)を紹介する。
本研究では,コンディショナルICAが観測不可能なデータの合成に成功しており,脳の復号化問題における分類精度の向上が期待できることを示す。
論文 参考訳(メタデータ) (2021-07-11T22:36:14Z) - Neonatal seizure detection from raw multi-channel EEG using a fully
convolutional architecture [1.8352113484137622]
このアーキテクチャは、従来の機械学習ベースのソリューションで使われている最先端の手作業による特徴に基づく表現とは対照的に、生脳波(EEG)信号からの発作イベントを検出するように設計されている。
提案したアーキテクチャは、新生児脳波にディープラーニングを適用するための新たな道を開き、正確な臨床ラベルの入手に頼らずに、トレーニングデータの量の関数としての性能が向上する。
論文 参考訳(メタデータ) (2021-05-28T14:08:36Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor
Imagery Recognition [9.039355687614076]
本稿では,頭皮脳波に基づく極めて高精度かつ応答性の高い運動画像(MI)認識を目的とした,新しい深層学習手法を提案する。
注意機構を持つBiLSTMは、生の脳波信号から関連する特徴を導出する。
0.4秒検出フレームワークは、それぞれ98.81%と94.64%の精度で、個人およびグループレベルのトレーニングに基づいて効率的かつ効率的な予測を行っている。
論文 参考訳(メタデータ) (2020-05-02T10:03:40Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
脳波(EEG)信号に基づく脳-コンピュータインタフェース(BCI)が注目されている。
運動画像(MI)データは、リハビリテーションや自律運転のシナリオに使用することができる。
脳波に基づくBCIシステムにはMI信号の分類が不可欠である。
論文 参考訳(メタデータ) (2020-03-03T02:34:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。