Impact of Annealing and Nanostructuring on Properties of NV Centers Created by Different Techniques
- URL: http://arxiv.org/abs/2412.07354v2
- Date: Mon, 17 Feb 2025 09:46:36 GMT
- Title: Impact of Annealing and Nanostructuring on Properties of NV Centers Created by Different Techniques
- Authors: Miriam Mendoza Delgado, Lucas Tsunaki, Shaul Michaelson, Mohan K. Kuntumalla, Johann P. Reithmaier, Alon Hoffman, Boris Naydenov, Cyril Popov,
- Abstract summary: Nitrogen-vacancy centers in diamonds have been an epicenter of research for diverse applications in quantum technologies.
A comparative study of the optical and spin properties of NVs created by ion implantation and chemical vapor deposition delta-doping is presented.
Nanopillars are fabricated with electron beam lithography and reactive ion etching for enhanced photon collection efficiency.
- Score: 0.0
- License:
- Abstract: Nitrogen-vacancy (NV) centers in diamonds have been an epicenter of research for diverse applications in quantum technologies. It is therefore imperative that their fabrication techniques are well understood and characterized for the technological scalability of these applications. A comparative study of the optical and spin properties of NVs created by ion implantation and chemical vapor deposition delta-doping is thus presented, combined with an investigation on the impact of annealing in vacuum at different temperatures. In addition, nanopillars are fabricated with electron beam lithography and reactive ion etching for enhanced photon collection efficiency. An extensive combination of characterization techniques is employed. Notably, the smallest nanopillars present fluorescence enhancements of factor around 50, compared to the unstructured regions. Annealing is also demonstrated to increase the optical contrast between the NVs' electronic states, the coherence and relaxation times both in bulk as in pillars. Regarding the NV preparation technique, the delta-doping is shown to create NVs with less lattice defects and strain compared to implantation.
Related papers
- Generation of photon pairs through spontaneous four-wave mixing in thin nonlinear layers [67.410870290301]
Pairs of entangled photons are a key resource for photonic quantum technologies.
Despite the success in the demonstration of spontaneous parametric-down-conversion (SPDC), there are almost no works on spontaneous four-wave mixing (SFWM)
SFWM can be implemented in any nanostructures, including isotropic and centrosymmetric ones.
arXiv Detail & Related papers (2025-02-03T12:30:06Z) - Single photon emitters in monolayer semiconductors coupled to transition metal dichalcogenide nanoantennas on silica and gold substrates [49.87501877273686]
Transition metal dichalcogenide (TMD) single photon emitters offer numerous advantages to quantum information applications.
Traditional materials used for the fabrication of nanoresonators, such as silicon or gallium phosphide (GaP), often require a high refractive index substrate.
Here, we use nanoantennas (NAs) fabricated from multilayer TMDs, which allow complete flexibility with the choice of substrate.
arXiv Detail & Related papers (2024-08-02T07:44:29Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Quantum Emitters in Aluminum Nitride Induced by Zirconium Ion
Implantation [70.64959705888512]
This study investigates aluminum nitride (AlN) as a material with properties highly suitable for integrated on-chip photonics.
We conduct a comprehensive study of the creation and photophysical properties of single-photon emitters in AlN utilizing Zirconium (Zr) and Krypton (Kr) heavy ion implantation.
With the 532 nm excitation wavelength, we found that single-photon emitters induced by ion implantation are primarily associated with vacancy-type defects in the AlN lattice for both Zr and Kr ions.
arXiv Detail & Related papers (2024-01-26T03:50:33Z) - Multicone Diamond Waveguides for Nanoscale Quantum Sensing [0.5131152350448099]
The electronic spin of the nitrogen-vacancy center in diamond is a promising quantum sensor for detecting nanoscopic magnetic and electric fields.
Here, we address the challenge of the poor signal-to-noise ratio (SNR) of prevalent optical spin-readout techniques.
We optimize the structure in simulation, observing an increase in collection efficiency for tall ($geq$ 5 $mu$m) pillars with tapered sidewalls.
An optimized device yields increased SNR, owing to improvements in collimation and directionality of emission.
arXiv Detail & Related papers (2023-06-05T15:28:12Z) - Mitigation of Nitrogen Vacancy Ionization from Material Integration for
Quantum Sensing [0.0]
The nitrogen-vacancy (NV) color center in diamond has demonstrated great promise in a wide range of quantum sensing.
The insulating layer of alumina between the metal and diamond provide improved photoluminescence and higher sensitivity in all modes of sensing.
arXiv Detail & Related papers (2023-04-13T03:10:53Z) - Enhancement of spin-to-charge conversion of diamond NV centers at
ambient conditions using surface electrodes [0.0]
We present a new mechanism for high contrast readout using the spin-to-charge conversion mechanism.
The technique opens up a range of alternative research pathways for the nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-09-28T11:40:21Z) - Spectrally stable nitrogen-vacancy centers in diamond formed by carbon
implantation into thin microstructures [0.0]
The nitrogen-vacancy center (NV) in diamond is increasingly used as a quantum sensor and as a building block for quantum networks.
We demonstrate that implantation of carbon ions yields a comparable density of NVs as implantation of nitrogen ions.
We propose a modified NV creation procedure in which the implantation is carried out after instead of before the diamond fabrication processes.
arXiv Detail & Related papers (2022-09-16T18:00:19Z) - Van der Waals Materials for Applications in Nanophotonics [49.66467977110429]
We present an emerging class of layered van der Waals (vdW) crystals as a viable nanophotonics platform.
We extract the dielectric response of 11 mechanically exfoliated thin-film (20-200 nm) van der Waals crystals, revealing high refractive indices up to n = 5.
We fabricate nanoantennas on SiO$$ and gold utilizing the compatibility of vdW thin films with a variety of substrates.
arXiv Detail & Related papers (2022-08-12T12:57:14Z) - Optically coherent nitrogen-vacancy defect centers in diamond
nanostructures [0.0]
Nitrogen-vacancy defect centers (NVs) in diamond act as quantum memories and can be interfaced by coherent photons.
We present strategies to significantly reduce the electric noise in diamond nanostructures.
We propose an entanglement protocol for nanostructure-coupled NVs providing entanglement generation rates up to hundreds of kHz.
arXiv Detail & Related papers (2022-03-10T19:42:43Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.