論文の概要: Direct phase encoding in QAOA: Describing combinatorial optimization problems through binary decision variables
- arxiv url: http://arxiv.org/abs/2412.07450v1
- Date: Tue, 10 Dec 2024 12:12:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:36:32.011022
- Title: Direct phase encoding in QAOA: Describing combinatorial optimization problems through binary decision variables
- Title(参考訳): QAOAにおける直接位相符号化:バイナリ決定変数による組合せ最適化問題の記述
- Authors: Simon Garhofer, Oliver Bringmann,
- Abstract要約: トラベリングパーソン販売問題(TSP)の例を用いて、最適化問題に対するより量子効率の高い回路構成を示す。
特定の冗長性を取り除いた場合、上記の従来の符号化に比べて、必要量子ビットの数は線形因子によって減少することができる。
実験の結果,小インスタンスの場合,提案したエンコーディングの方が精度が高いことがわかった。
- 参考スコア(独自算出の注目度): 0.7015624626359264
- License:
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) and its derived variants are widely in use for approximating combinatorial optimization problem instances on gate-based Noisy Intermediate Scale Quantum (NISQ) computers. Commonly, circuits required for QAOA are constructed by first reformulating a given problem as a Quadratic Unconstrained Binary Optimization (QUBO) problem. It is then straightforward to synthesize a QAOA circuit from QUBO equations. In this work, we illustrate a more qubit-efficient circuit construction for combinatorial optimization problems by the example of the Traveling Salesperson Problem (TSP). Conventionally, the qubit encoding in QAOA for the TSP describes a tour using a sequence of nodes, where each node is written as a 1-hot binary vector. We propose to encode TSP tours by selecting edges included in the tour. Removing certain redundancies, the number of required qubits can be reduced by a linear factor compared to the aforementioned conventional encoding. We examined implementations of both QAOA encoding variants in terms of their approximation quality and runtime. Our experiments show that for small instances results are significantly more accurate using our proposed encoding, whereas the number of required classical optimizer iterations increases only slightly.
- Abstract(参考訳): The Quantum Approximate Optimization Algorithm (QAOA) and its derived variants are wide used to Approximating combinatorial optimization problem instance on gate-based Noisy Intermediate Scale Quantum (NISQ) computer。
一般に、QAOAに必要な回路は、まず与えられた問題を擬似非拘束バイナリ最適化(QUBO)問題として再構成することで構成される。
次に、QUBO方程式からQAOA回路を合成する。
本稿では,TSP(Traking Salesperson Problem)の例を用いて,組合せ最適化問題に対するより量子効率の高い回路構成について述べる。
従来、TSP用のQAOAのqubitエンコーディングでは、各ノードが1ホットのバイナリベクトルとして記述されるノードのシーケンスを使用したツアーが記述されていた。
ツアーに含まれるエッジを選択することで,TSPツアーを符号化する。
特定の冗長性を取り除いた場合、上記の従来の符号化に比べて、必要量子ビットの数は線形因子によって減少することができる。
近似品質と実行時間の観点から,QAOA符号化の両方の実装について検討した。
実験の結果, 提案した符号化法により, より精度が向上し, 必要な古典的オプティマイザの繰り返し回数はわずかに増加することがわかった。
関連論文リスト
- Improving Quantum and Classical Decomposition Methods for Vehicle Routing [2.4646794072984477]
本稿では,2つの分解法,すなわちグラフ縮小と回路切断の精巧な組み合わせを提案する。
この結果から,現在の量子技術の制約内での最適化問題に対するアルゴリズムの性能に関する知見が得られた。
論文 参考訳(メタデータ) (2024-04-08T14:19:25Z) - Indirect Quantum Approximate Optimization Algorithms: application to the
TSP [1.1786249372283566]
量子交互作用素 Ansatz はベクトルの集合を記述するハミルトニアンを効率的にモデル化するためにユニタリ作用素の一般パラメータ化された族を考える。
このアルゴリズムは,(1)量子マシン上で実行される量子パラメトリゼーション回路が弦ベクトルの集合をモデル化し,(2)古典機械で実行される古典的メタ最適化ループ,(3)各弦ベクトル計算の平均コストを推定する。
論文 参考訳(メタデータ) (2023-11-06T17:39:14Z) - Qubit efficient quantum algorithms for the vehicle routing problem on
NISQ processors [48.68474702382697]
時間窓付き車両ルーティング問題(VRPTW)は、ロジスティクス業界で直面する一般的な最適化問題である。
そこで本研究では,以前に導入した量子ビット符号化方式を用いて,バイナリ変数の数を削減した。
論文 参考訳(メタデータ) (2023-06-14T13:44:35Z) - Quantum Approximate Optimization Algorithm with Cat Qubits [0.0]
猫の量子ビットを用いたQAOAを用いてMaxCut問題の解法を数値シミュレーションする。
猫の量子ビットを用いたQAOAの実行は、2レベルシステムに符号化された量子ビットに対して、MaxCutのランダムなインスタンスに対する近似比を増大させることを示す。
論文 参考訳(メタデータ) (2023-05-09T15:44:52Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Qubit Reduction and Quantum Speedup for Wireless Channel Assignment
Problem [2.840363325289377]
NPハード無線チャネル割り当て問題を高階非制約バイナリ最適化(HUBO)として定式化する方法を提案する。
我々は、チャネルインデックスの昇降二進符号化を考案し、特定の量子回路を構築し、Grover Adaptive Search(GAS)に必要なキュービットとゲートの正確な数を導出する。
解析により,提案するHUBOの定式化により,従来の2次定式化と比較して,キュービット数やクエリの複雑さが著しく減少することが明らかとなった。
論文 参考訳(メタデータ) (2022-08-10T06:59:43Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
本稿では,n+1$ qubitsしか使用しないGoemans-Williamsonアルゴリズムの変分量子アルゴリズムを提案する。
補助量子ビット上で適切にパラメータ化されたユニタリ条件として目的行列を符号化することにより、効率的な最適化を実現する。
各種NPハード問題に対して,Goemans-Williamsonアルゴリズムの量子的効率的な実装を考案し,提案プロトコルの有効性を実証する。
論文 参考訳(メタデータ) (2022-06-30T03:15:23Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Optimal qubit assignment and routing via integer programming [0.22940141855172028]
論理量子回路を2ビット接続に制限のあるハードウェアにマッピングする問題を考察する。
我々はこの問題を2変数のネットワークフロー定式化を用いて整数線形プログラムとしてモデル化する。
本稿では,回路の忠実度,全深度,クロストークの尺度などのコスト関数について考察する。
論文 参考訳(メタデータ) (2021-06-11T15:02:26Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。