論文の概要: Quantum Approximate Optimization Algorithm with Cat Qubits
- arxiv url: http://arxiv.org/abs/2305.05556v2
- Date: Tue, 17 Sep 2024 15:15:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 23:00:28.815795
- Title: Quantum Approximate Optimization Algorithm with Cat Qubits
- Title(参考訳): 猫量子ビットを用いた量子近似最適化アルゴリズム
- Authors: Pontus Vikstål, Laura García-Álvarez, Shruti Puri, Giulia Ferrini,
- Abstract要約: 猫の量子ビットを用いたQAOAを用いてMaxCut問題の解法を数値シミュレーションする。
猫の量子ビットを用いたQAOAの実行は、2レベルシステムに符号化された量子ビットに対して、MaxCutのランダムなインスタンスに対する近似比を増大させることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) -- one of the leading algorithms for applications on intermediate-scale quantum processors -- is designed to provide approximate solutions to combinatorial optimization problems with shallow quantum circuits. Here, we study QAOA implementations with cat qubits, using coherent states with opposite amplitudes. The dominant noise mechanism, i.e., photon losses, results in $Z$-biased noise with this encoding. We consider in particular an implementation with Kerr resonators. We numerically simulate solving MaxCut problems using QAOA with cat qubits by simulating the required gates sequence acting on the Kerr non-linear resonators, and compare to the case of standard qubits, encoded in ideal two-level systems, in the presence of single-photon loss. Our results show that running QAOA with cat qubits increases the approximation ratio for random instances of MaxCut with respect to qubits encoded into two-level systems.
- Abstract(参考訳): 量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm, QAOA)は、量子回路の浅い組み合わせ最適化問題に対する近似解を提供するように設計されている。
本稿では,猫量子ビットを用いたQAOA実装について,逆振幅のコヒーレントな状態を用いて検討する。
支配的なノイズ機構、すなわち光子損失は、この符号化でZ$バイアスノイズをもたらす。
我々は特にKerr共振器による実装を考える。
我々はKerr非線形共振器に作用する必要ゲート列をシミュレートし、QAOAと猫量子ビットを用いたMaxCut問題の解法を数値シミュレーションし、単一光子損失の存在下で理想的な2レベルシステムで符号化された標準量子ビットの場合と比較する。
その結果,猫の量子ビットを用いたQAOAの実行は,2レベルシステムに符号化された量子ビットに対して,MaxCutのランダムなインスタンスに対する近似比を増大させることがわかった。
関連論文リスト
- Optimization by Decoded Quantum Interferometry [43.55132675053983]
本稿では,古典的復号化問題に対する古典的最適化問題を減じるための量子アルゴリズムを提案する。
DQIは、既知の量子時間古典アルゴリズムよりも近似比が良いことを示す。
論文 参考訳(メタデータ) (2024-08-15T17:47:42Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Indirect Quantum Approximate Optimization Algorithms: application to the
TSP [1.1786249372283566]
量子交互作用素 Ansatz はベクトルの集合を記述するハミルトニアンを効率的にモデル化するためにユニタリ作用素の一般パラメータ化された族を考える。
このアルゴリズムは,(1)量子マシン上で実行される量子パラメトリゼーション回路が弦ベクトルの集合をモデル化し,(2)古典機械で実行される古典的メタ最適化ループ,(3)各弦ベクトル計算の平均コストを推定する。
論文 参考訳(メタデータ) (2023-11-06T17:39:14Z) - Trainability Analysis of Quantum Optimization Algorithms from a Bayesian
Lens [2.9356265132808024]
雑音のないQAOA回路の深さが$tildemathtlog nright)$を効率よく訓練できることを示す。
この結果は、ノイズの多い中間スケール量子時代における量子アルゴリズムの理論的性能を提供する。
論文 参考訳(メタデータ) (2023-10-10T02:56:28Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
行列生成状態(MPS)から短深さ量子回路を生成する新しいアルゴリズムであるAQCtensorを導入する。
我々のアプローチは、量子多体ハミルトニアンの時間進化から生じる量子状態の準備に特化している。
100量子ビットのシミュレーション問題に対して、AQCtensorは、結果の最適化回路の深さの少なくとも1桁の縮小を実現していることを示す。
論文 参考訳(メタデータ) (2023-01-20T14:40:29Z) - An entanglement perspective on the quantum approximate optimization
algorithm [0.0]
ランダム化および最適化されたQAOA回路による絡み合いの増大と広がりについて検討する。
また、ランダム行列理論に関連する絡み合いスペクトルについても検討する。
論文 参考訳(メタデータ) (2022-06-14T17:37:44Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
浅いQAOA回路の量子ビット数と線形にスケールするグラフ分解に基づく古典的アルゴリズムを提案する。
我々の結果は、QAOAによる量子アドバンテージの探索だけでなく、NISQプロセッサのベンチマークにも有用である。
論文 参考訳(メタデータ) (2021-12-21T12:41:31Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。