論文の概要: Modelling Mosquito Population Dynamics using PINN-derived Empirical Parameters
- arxiv url: http://arxiv.org/abs/2412.07514v3
- Date: Fri, 13 Jun 2025 12:48:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 13:34:01.384491
- Title: Modelling Mosquito Population Dynamics using PINN-derived Empirical Parameters
- Title(参考訳): PINNに基づく経験的パラメータを用いたモスキート個体群動態のモデル化
- Authors: Branislava Lalic, Dinh Viet Cuong, Mina Petric, Vladimir Pavlovic, Ana Firanj Sremac, Mark Roantree,
- Abstract要約: 我々は、逆パラメータを決定するためにPINNを用いた力学モデルにおける生物学的プロセスのパラメータ化の改善に焦点をあてる。
PINNは、物理法則、生物学的法則、化学法則を、観測または測定データに基づいて訓練されたニューラルネットワークに組み込む。
PINNモデルの性能についてより深く理解するために、PINNアーキテクチャの変更がフレームワークの性能に与える影響を調査するために、最終的な検証が使用された。
- 参考スコア(独自算出の注目度): 5.585625844344932
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Vector-borne diseases continue to pose a significant health threat globally with more than 3 billion people at risk each year. Despite some limitations, mechanistic dynamic models are a popular approach to representing biological processes using ordinary differential equations where the parameters describe the different development and survival rates. Recent advances in population modelling have seen the combination of these mechanistic models with machine learning. One approach is physics-informed neural networks (PINNs) whereby the machine learning framework embeds physical, biological, or chemical laws into neural networks trained on observed or measured data. This enables forward simulations, predicting system behaviour from given parameters and inputs, and inverse modelling, improving parameterisation of existing parameters and estimating unknown or latent variables. In this paper, we focus on improving the parameterisation of biological processes in mechanistic models using PINNs to determine inverse parameters. In comparing mechanistic and PINN models, our experiments offer important insights into the strengths and weaknesses of both approaches but demonstrated that the PINN approach generally outperforms the dynamic model. For a deeper understanding of the performance of PINN models, a final validation was used to investigate how modifications to PINN architectures affect the performance of the framework. By varying only a single component at a time and keeping all other factors constant, we are able to observe the effect of each change.
- Abstract(参考訳): ベクター病は世界中で深刻な健康上の脅威となり続けており、毎年30億人以上が危険にさらされている。
いくつかの制限があるにもかかわらず、力学力学モデル(英語版)は、発達と生存率が異なるパラメータを持つ常微分方程式を用いて生物学的過程を表現するための一般的なアプローチである。
人口モデリングの最近の進歩は、これらの力学モデルと機械学習の組み合わせを見てきた。
1つのアプローチは物理情報ニューラルネットワーク(PINN)であり、機械学習フレームワークは物理的、生物学的、化学的な法則を観測または測定されたデータに基づいてトレーニングされたニューラルネットワークに組み込む。
これにより、フォワードシミュレーション、与えられたパラメータや入力からのシステム動作の予測、逆モデリング、既存のパラメータのパラメータ化の改善、未知変数や潜在変数の推定が可能になる。
本稿では,逆パラメータを決定するためにPINNを用いた力学モデルにおける生体プロセスのパラメータ化の改善に焦点をあてる。
メカニスティックモデルとPINNモデルの比較において、我々の実験は両方のアプローチの長所と短所について重要な洞察を提供するが、PINNアプローチが一般的に動的モデルより優れていることを実証した。
PINNモデルの性能についてより深く理解するために、PINNアーキテクチャの変更がフレームワークの性能に与える影響を調査するために、最終的な検証が使用された。
一度に1つのコンポーネントだけを変更し、他のすべての要因を一定に保つことで、各変更の効果を観察することができます。
関連論文リスト
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
逐次変分自動エンコーダであるLangevinFlowを導入し、潜伏変数の時間的進化をアンダーダム化したLangevin方程式で制御する。
われわれのアプローチは、慣性、減衰、学習されたポテンシャル関数、力などの物理的事前を組み込んで、ニューラルネットワークにおける自律的および非自律的プロセスの両方を表現する。
本手法は,ロレンツ誘引器によって生成される合成神経集団に対する最先端のベースラインより優れる。
論文 参考訳(メタデータ) (2025-07-15T17:57:48Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Parametric model reduction of mean-field and stochastic systems via higher-order action matching [1.1509084774278489]
我々は、勾配と平均場効果を特徴とする物理系の人口動態のモデルを学ぶ。
提案手法は,幅広いパラメータの集団動態を正確に予測し,最先端拡散モデルおよびフローベースモデルより優れていることを示す。
論文 参考訳(メタデータ) (2024-10-15T19:05:28Z) - Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いた力学系の同定と推定について検討する。
PINNは、既知の物理法則をニューラルネットワークの損失関数に直接埋め込むことによって、複雑な現象の単純な埋め込みを可能にするユニークな利点を提供する。
その結果、PINNは上記のすべてのタスクに対して、たとえモデルエラーがあっても、効率的なツールを提供することを示した。
論文 参考訳(メタデータ) (2024-10-02T08:58:30Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Adapting Physics-Informed Neural Networks to Improve ODE Optimization in Mosquito Population Dynamics [0.019972837513980313]
本稿では,ODE システムの前方および逆問題に対していくつかの改良を加えた PINN フレームワークを提案する。
この枠組みは、蚊の常微分方程式によって生じる勾配不均衡と硬い問題に取り組む。
予備的な結果は、物理インフォームド機械学習が生態システムの研究を前進させる大きな可能性を秘めていることを示している。
論文 参考訳(メタデータ) (2024-06-07T17:40:38Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - Deep Learning for Fast Inference of Mechanistic Models' Parameters [0.28675177318965045]
本稿では,観測対象の力学モデルのパラメータを直接予測するために,ディープニューラルネットワーク(NN)を提案する。
本稿では,ニューラルネットワークとメカニスティックモデルを組み合わせたトレーニング手法を検討する。
ニューラルネットワークの推定値は、さらなる適合によってわずかに改善されているのに対して、これらの推定は、適合手順単独よりも測定精度が良いことがわかった。
論文 参考訳(メタデータ) (2023-12-05T22:16:54Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
本研究は,ROM構築と動的識別の低減を組み合わせたデータ駆動型非侵入型フレームワークを提案する。
提案手法は、非線形力学(SINDy)のパラメトリックスパース同定によるオートエンコーダニューラルネットワークを利用して、低次元力学モデルを構築する。
これらは、システムパラメータの関数として周期的定常応答の進化を追跡し、過渡位相の計算を避け、不安定性と分岐を検出することを目的としている。
論文 参考訳(メタデータ) (2022-11-13T01:57:18Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Supervised Parameter Estimation of Neuron Populations from Multiple
Firing Events [3.2826301276626273]
本研究では,一対のスパイキング系列とパラメータラベルからなる学習セットから,ニューロン集団のパラメータを自動的に学習する手法について,教師あり学習を通して検討した。
我々は、ニューロンモデルを用いて、異なるパラメータ設定での計算において多くのニューロン集団をシミュレートする。
次に、遺伝的検索、ベイズ逐次推定、ランダムウォーク近似モデルなどの古典的手法と比較する。
論文 参考訳(メタデータ) (2022-10-02T03:17:05Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
入力パラメータのトレーニング可能な関数を用いて条件パラメトリゼーションの考え方を一般化する。
条件パラメータ化ネットワークは従来のネットワークに比べて優れた性能を示すことを示す。
CP-GNetと呼ばれるネットワークアーキテクチャも、メッシュ上のフローのスタンドアロン予測に反応可能な最初のディープラーニングモデルとして提案されている。
論文 参考訳(メタデータ) (2021-09-15T20:21:13Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Deep neural network enabled corrective source term approach to hybrid
analysis and modeling [0.0]
ハイブリッド分析モデリング(Hybrid Analysis and Modeling, HAM)は、物理に基づくモデリングとデータ駆動モデリングを組み合わせることを目的とした、新しいモデリングパラダイムである。
補正元項アプローチ(CoSTA)のHAMに対する新しいアプローチを導入し、正当化し、実証する。
論文 参考訳(メタデータ) (2021-05-24T20:17:13Z) - On the Sparsity of Neural Machine Translation Models [65.49762428553345]
性能向上のために冗長パラメータを再利用できるかどうかを検討する。
実験と分析は異なるデータセットとNTTアーキテクチャで体系的に行われる。
論文 参考訳(メタデータ) (2020-10-06T11:47:20Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Prediction with Approximated Gaussian Process Dynamical Models [7.678864239473703]
我々はマルコフであるGPDMを近似し、その制御理論的性質を解析する。
結果は、近似モデルのパワーを示す数値的な例で示される。
論文 参考訳(メタデータ) (2020-06-25T16:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。