A clustering aggregation algorithm on neutral-atoms and annealing quantum processors
- URL: http://arxiv.org/abs/2412.07558v1
- Date: Tue, 10 Dec 2024 14:48:44 GMT
- Title: A clustering aggregation algorithm on neutral-atoms and annealing quantum processors
- Authors: Riccardo Scotti, Gabriella Bettonte, Antonio Costantini, Sara Marzella, Daniele Ottaviani, Stefano Lodi,
- Abstract summary: This work presents a hybrid quantum-classical algorithm to perform clustering aggregation.
It is designed for neutral-atoms quantum computers and quantum annealers.
Findings suggest promising potential for future advancements in hybrid quantum-classical pipelines.
- Score: 0.44531072184246007
- License:
- Abstract: This work presents a hybrid quantum-classical algorithm to perform clustering aggregation, designed for neutral-atoms quantum computers and quantum annealers. Clustering aggregation is a technique that mitigates the weaknesses of clustering algorithms, an important class of data science methods for partitioning datasets, and is widely employed in many real-world applications. By expressing the clustering aggregation problem instances as a Maximum Independent Set (MIS) problem and as a Quadratic Unconstrained Binary Optimization (QUBO) problem, it was possible to solve them by leveraging the potential of Pasqal's Fresnel (neutral-atoms processor) and D-Wave's Advantage QPU (quantum annealer). Additionally, the designed clustering aggregation algorithm was first validated on a Fresnel emulator based on QuTiP and later on an emulator of the same machine based on tensor networks, provided by Pasqal. The results revealed technical limitations, such as the difficulty of adding additional constraints on the employed neutral-atoms platform and the need for better metrics to measure the quality of the produced clusterings. However, this work represents a step towards a benchmark to compare two different machines: a quantum annealer and a neutral-atom quantum computer. Moreover, findings suggest promising potential for future advancements in hybrid quantum-classical pipelines, although further improvements are needed in both quantum and classical components.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Clustering by Contour coreset and variational quantum eigensolver [0.8544206632559302]
We propose solving the k-means clustering problem with the variational quantum eigensolver (VQE) and a customised coreset method, the Contour coreset.
Our work has shown that quantum tailored coreset techniques has the potential to significantly boost the performance of quantum algorithms.
arXiv Detail & Related papers (2023-12-06T14:21:17Z) - Quantum Vision Clustering [9.483577377335305]
We present the first clustering formulation tailored for resolution using Adiabatic quantum computing.
The proposed approach demonstrates high competitiveness compared to state-of-the-art optimization-based methods.
This work showcases the solvability of the proposed clustering problem on current-generation real quantum computers for small examples.
arXiv Detail & Related papers (2023-09-18T16:15:16Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Variational Quantum and Quantum-Inspired Clustering [0.0]
We present a quantum algorithm for clustering data based on a variational quantum circuit.
The algorithm allows to classify data into many clusters, and can easily be implemented in few-qubit Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2022-06-20T17:02:19Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Quantum spectral clustering algorithm for unsupervised learning [0.8399688944263843]
We propose a circuit design to implement spectral clustering on a quantum processor with a substantial speedup.
Compared with the established quantum $k$-means algorithms, our method does not require a quantum random access memory or a quantum adiabatic process.
arXiv Detail & Related papers (2022-03-07T05:06:47Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.