論文の概要: Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2412.07618v1
- Date: Tue, 10 Dec 2024 15:56:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:39:13.563041
- Title: Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs
- Title(参考訳): 非定常環境への適応:知識グラフを用いたマルチアーマド帯域拡張検索生成
- Authors: Xiaqiang Tang, Jian Li, Nan Du, Sihong Xie,
- Abstract要約: 近年の研究では、検索-拡張生成フレームワークと知識グラフを組み合わせることで、大規模言語モデルの推論能力を強力に向上することが示されている。
我々は多目的帯域拡張RAGフレームワークを導入し、多様な機能を持つ複数の検索手法をサポートする。
本手法は,定常環境下での最先端性能を達成しつつ,非定常環境でのベースライン手法を著しく向上させる。
- 参考スコア(独自算出の注目度): 23.357843519762483
- License:
- Abstract: Despite the superior performance of Large language models on many NLP tasks, they still face significant limitations in memorizing extensive world knowledge. Recent studies have demonstrated that leveraging the Retrieval-Augmented Generation (RAG) framework, combined with Knowledge Graphs that encapsulate extensive factual data in a structured format, robustly enhances the reasoning capabilities of LLMs. However, deploying such systems in real-world scenarios presents challenges: the continuous evolution of non-stationary environments may lead to performance degradation and user satisfaction requires a careful balance of performance and responsiveness. To address these challenges, we introduce a Multi-objective Multi-Armed Bandit enhanced RAG framework, supported by multiple retrieval methods with diverse capabilities under rich and evolving retrieval contexts in practice. Within this framework, each retrieval method is treated as a distinct ``arm''. The system utilizes real-time user feedback to adapt to dynamic environments, by selecting the appropriate retrieval method based on input queries and the historical multi-objective performance of each arm. Extensive experiments conducted on two benchmark KGQA datasets demonstrate that our method significantly outperforms baseline methods in non-stationary settings while achieving state-of-the-art performance in stationary environments. Code and data are available at https://github.com/FUTUREEEEEE/Dynamic-RAG.git
- Abstract(参考訳): 多くのNLPタスクにおける大規模言語モデルの優れたパフォーマンスにもかかわらず、それらは広い世界の知識を記憶する上で重要な制限に直面している。
近年の研究では、LLMの推論能力を高めるために、検索・拡張生成(RAG)フレームワークと、構造化されたフォーマットで広範囲の事実データをカプセル化する知識グラフの併用が実証されている。
しかし、そのようなシステムを現実のシナリオにデプロイすることは、非定常環境の継続的進化によってパフォーマンスが低下し、ユーザの満足度は、パフォーマンスと応答性の慎重なバランスを必要とする。
これらの課題に対処するため,我々は多目的多目的帯域拡張RAGフレームワークを導入する。
このフレームワーク内では、各検索方法は `arm'' として扱われる。
リアルタイムのユーザフィードバックを利用して動的環境に適応し、入力クエリと各アームの過去の多目的性能に基づいて適切な検索方法を選択する。
2つのベンチマークKGQAデータセットで行った大規模な実験により,本手法は定常環境下での最先端性能を達成しつつ,非定常環境でのベースライン手法を著しく上回ることを示した。
コードとデータはhttps://github.com/FUTUREEEEEE/Dynamic-RAG.gitで公開されている。
関連論文リスト
- CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
CodeXEmbedは400Mから7Bパラメータの大規模なコード埋め込みモデルのファミリーである。
我々の新しいトレーニングパイプラインは、複数のプログラミング言語を統合し、様々なコード関連タスクを共通の検索フレームワークに変換する。
私たちの7Bモデルは、コード検索において新しい最先端(SOTA)を設定し、以前の主要なモデルであるVoyage-CodeをCoIRベンチマークで20%以上上回っています。
論文 参考訳(メタデータ) (2024-11-19T16:54:45Z) - Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey [16.89460694470542]
Inlicit Neural Representation (INR) は知識表現のパラダイムとして登場した。
INRは、データを連続的な暗黙の関数としてモデル化するために多層パーセプトロン(MLP)を利用する。
この調査では、アクティベーション機能、位置エンコーディング、統合戦略、ネットワーク構造という4つの重要な領域に分類する明確な分類法を紹介した。
論文 参考訳(メタデータ) (2024-11-06T06:14:24Z) - Self-adaptive Multimodal Retrieval-Augmented Generation [0.0]
我々は,自己適応型マルチモーダル検索型生成(SAM-RAG)という新しい手法を提案する。
SAM-RAGは、必要なときに画像キャプションを含む入力クエリに基づいて関連文書を動的にフィルタリングするだけでなく、検索した文書と出力の両方の品質を検証する。
その結果,SAM-RAGは検索精度と応答生成の両面で既存の最先端手法を上回ることがわかった。
論文 参考訳(メタデータ) (2024-10-15T06:39:35Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - Repoformer: Selective Retrieval for Repository-Level Code Completion [30.706277772743615]
検索強化生成(RAG)の最近の進歩は、リポジトリレベルのコード補完の新たな時代が始まった。
本稿では,不要な場合の検索を回避するため,選択的なRAGフレームワークを提案する。
我々のフレームワークは、異なる世代モデル、レトリバー、プログラミング言語に対応できることを示します。
論文 参考訳(メタデータ) (2024-03-15T06:59:43Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z) - Self-Sustaining Multiple Access with Continual Deep Reinforcement
Learning for Dynamic Metaverse Applications [17.436875530809946]
Metaverseは,さまざまな世界で構成される仮想環境の構築を目的とした,新たなパラダイムだ。
このような動的で複雑なシナリオに対処するためには、自己維持戦略を採用する方法が考えられる。
本稿では,知的エージェントのスループットを最大化するために,マルチチャネル環境におけるマルチアクセスの問題について検討する。
論文 参考訳(メタデータ) (2023-09-18T22:02:47Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。