論文の概要: Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2412.07618v2
- Date: Fri, 20 Dec 2024 03:12:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 20:52:52.482207
- Title: Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs
- Title(参考訳): 非定常環境への適応:知識グラフを用いたマルチアーマド帯域拡張検索生成
- Authors: Xiaqiang Tang, Jian Li, Nan Du, Sihong Xie,
- Abstract要約: 近年の研究では、検索-拡張生成フレームワークと知識グラフを組み合わせることで、大規模言語モデルの推論能力を強力に向上することが示されている。
我々は多目的帯域拡張RAGフレームワークを導入し、多様な機能を持つ複数の検索手法をサポートする。
本手法は,定常環境下での最先端性能を達成しつつ,非定常環境でのベースライン手法を著しく向上させる。
- 参考スコア(独自算出の注目度): 23.357843519762483
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the superior performance of Large language models on many NLP tasks, they still face significant limitations in memorizing extensive world knowledge. Recent studies have demonstrated that leveraging the Retrieval-Augmented Generation (RAG) framework, combined with Knowledge Graphs that encapsulate extensive factual data in a structured format, robustly enhances the reasoning capabilities of LLMs. However, deploying such systems in real-world scenarios presents challenges: the continuous evolution of non-stationary environments may lead to performance degradation and user satisfaction requires a careful balance of performance and responsiveness. To address these challenges, we introduce a Multi-objective Multi-Armed Bandit enhanced RAG framework, supported by multiple retrieval methods with diverse capabilities under rich and evolving retrieval contexts in practice. Within this framework, each retrieval method is treated as a distinct ``arm''. The system utilizes real-time user feedback to adapt to dynamic environments, by selecting the appropriate retrieval method based on input queries and the historical multi-objective performance of each arm. Extensive experiments conducted on two benchmark KGQA datasets demonstrate that our method significantly outperforms baseline methods in non-stationary settings while achieving state-of-the-art performance in stationary environments. Code and data are available at https://github.com/FUTUREEEEEE/Dynamic-RAG.git
- Abstract(参考訳): 多くのNLPタスクにおける大規模言語モデルの優れたパフォーマンスにもかかわらず、それらは広い世界の知識を記憶する上で重要な制限に直面している。
近年の研究では、LLMの推論能力を高めるために、検索・拡張生成(RAG)フレームワークと、構造化されたフォーマットで広範囲の事実データをカプセル化する知識グラフの併用が実証されている。
しかし、そのようなシステムを現実のシナリオにデプロイすることは、非定常環境の継続的進化によってパフォーマンスが低下し、ユーザの満足度は、パフォーマンスと応答性の慎重なバランスを必要とする。
これらの課題に対処するため,我々は多目的多目的帯域拡張RAGフレームワークを導入する。
このフレームワーク内では、各検索方法は `arm'' として扱われる。
リアルタイムのユーザフィードバックを利用して動的環境に適応し、入力クエリと各アームの過去の多目的性能に基づいて適切な検索方法を選択する。
2つのベンチマークKGQAデータセットで行った大規模な実験により,本手法は定常環境下での最先端性能を達成しつつ,非定常環境でのベースライン手法を著しく上回ることを示した。
コードとデータはhttps://github.com/FUTUREEEEEE/Dynamic-RAG.gitで公開されている。
関連論文リスト
- Context-Guided Dynamic Retrieval for Improving Generation Quality in RAG Models [2.9687381456164004]
意味理解と知識スケジューリングの効率化を図るための状態認識型動的知識検索機構を提案する。
提案した構造は, GPT-4, GPT-4o, DeepSeek など,様々な大規模モデルで徹底的に評価されている。
このアプローチはまた、意味的あいまいさとマルチドキュメント融合を含むタスクにおいて、強い堅牢性と生成一貫性を示す。
論文 参考訳(メタデータ) (2025-04-28T02:50:45Z) - Simplifying Data Integration: SLM-Driven Systems for Unified Semantic Queries Across Heterogeneous Databases [0.0]
本稿では,Small Language Model(SLM)をベースとした,軽量な検索・拡張生成(RAG)とセマンティック・アウェアなデータ構造化の進歩を相乗化するシステムを提案する。
SLMを用いた構造化データ抽出にMiniRAGのセマンティック・アウェア・ヘテロジニアス・グラフインデックスとトポロジ・エンハンス・検索を統合し,従来の手法の限界に対処する。
実験結果は精度と効率性において優れた性能を示し、教師なし評価指標としてのセマンティックエントロピーの導入はモデルの不確実性に対する堅牢な洞察を提供する。
論文 参考訳(メタデータ) (2025-04-08T03:28:03Z) - Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding [0.0]
本稿では,動的検索戦略と強化微調整により,RAG(Retrieval-Augmented Generation)システムを強化する枠組みを提案する。
我々のフレームワークは2つの補完手法を統合している: Policy-d Retrieval Augmented Generation (PORAG)とAdaptive Token-Layer Attention Scoring (ATLAS)。
我々のフレームワークは幻覚を減らし、ドメイン固有の推論を強化し、従来のRAGシステムよりも優れた効率とスケーラビリティを実現する。
論文 参考訳(メタデータ) (2025-04-02T01:16:10Z) - MultiConIR: Towards multi-condition Information Retrieval [57.6405602406446]
我々は,マルチコンディションシナリオにおける検索モデルの評価を目的とした,最初のベンチマークであるMultiConIRを紹介する。
本稿では,マルチコンディションのロバスト性,モノトニック関連性ランキング,クエリフォーマットの感度に基づいて,検索とリランクモデルの評価を行う3つのタスクを提案する。
論文 参考訳(メタデータ) (2025-03-11T05:02:03Z) - REAL-MM-RAG: A Real-World Multi-Modal Retrieval Benchmark [16.55516587540082]
本稿では,リアルタイム検索に不可欠な4つの重要な特性に対処する自動生成ベンチマークREAL-MM-RAGを紹介する。
本稿では,キーワードマッチング以外のモデルのセマンティック理解を評価するために,クエリリフレッシングに基づく多言語レベルのスキームを提案する。
我々のベンチマークでは、特にテーブル重ドキュメントの扱いや、クエリ・リフレージングに対する堅牢性において、重要なモデルの弱点が明らかになっている。
論文 参考訳(メタデータ) (2025-02-17T22:10:47Z) - MBA-RAG: a Bandit Approach for Adaptive Retrieval-Augmented Generation through Question Complexity [30.346398341996476]
本稿では,クエリの複雑性に基づいて最適な検索戦略を動的に選択する強化学習ベースのフレームワークを提案する。
提案手法は,検索コストを低減しつつ,複数のシングルホップおよびマルチホップデータセット上でのアート結果の新たな状態を実現する。
論文 参考訳(メタデータ) (2024-12-02T14:55:02Z) - CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
CodeXEmbedは400Mから7Bパラメータの大規模なコード埋め込みモデルのファミリーである。
我々の新しいトレーニングパイプラインは、複数のプログラミング言語を統合し、様々なコード関連タスクを共通の検索フレームワークに変換する。
私たちの7Bモデルは、コード検索において新しい最先端(SOTA)を設定し、以前の主要なモデルであるVoyage-CodeをCoIRベンチマークで20%以上上回っています。
論文 参考訳(メタデータ) (2024-11-19T16:54:45Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [70.6584488911715]
検索増強世代(RAG)は、かなりの研究関心を集めている。
既存のRAGツールキットは、しばしば重くて柔軟であり、研究者のカスタマイズのニーズを満たすことができない。
我々のツールキットは16の高度なRAGメソッドを実装し、38のベンチマークデータセットを収集し、整理した。
論文 参考訳(メタデータ) (2024-05-22T12:12:40Z) - Repoformer: Selective Retrieval for Repository-Level Code Completion [30.706277772743615]
検索強化生成(RAG)の最近の進歩は、リポジトリレベルのコード補完の新たな時代が始まった。
本稿では,不要な場合の検索を回避するため,選択的なRAGフレームワークを提案する。
我々のフレームワークは、異なる世代モデル、レトリバー、プログラミング言語に対応できることを示します。
論文 参考訳(メタデータ) (2024-03-15T06:59:43Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。