Can LLMs faithfully generate their layperson-understandable 'self'?: A Case Study in High-Stakes Domains
- URL: http://arxiv.org/abs/2412.07781v1
- Date: Mon, 25 Nov 2024 06:54:47 GMT
- Title: Can LLMs faithfully generate their layperson-understandable 'self'?: A Case Study in High-Stakes Domains
- Authors: Arion Das, Asutosh Mishra, Amitesh Patel, Soumilya De, V. Gurucharan, Kripabandhu Ghosh,
- Abstract summary: We introduce a novel notion of LLM explainability to laypersons, termed $textitReQuesting$, across three high-priority application domains -- law, health and finance.
The proposed notion exhibits faithful generation of explainable layman-understandable algorithms on multiple tasks through high degree of intrinsic reasoning.
- Score: 2.8140639769111133
- License:
- Abstract: Large Language Models (LLMs) have significantly impacted nearly every domain of human knowledge. However, the explainability of these models esp. to laypersons, which are crucial for instilling trust, have been examined through various skeptical lenses. In this paper, we introduce a novel notion of LLM explainability to laypersons, termed $\textit{ReQuesting}$, across three high-priority application domains -- law, health and finance, using multiple state-of-the-art LLMs. The proposed notion exhibits faithful generation of explainable layman-understandable algorithms on multiple tasks through high degree of reproducibility. Furthermore, we observe a notable alignment of the explainable algorithms with intrinsic reasoning of the LLMs.
Related papers
- Argumentation Computation with Large Language Models : A Benchmark Study [6.0682923348298194]
Large language models (LLMs) have made significant advancements in neuro-symbolic computing.
We aim to investigate the capability of LLMs in determining the extensions of various abstract argumentation semantics.
arXiv Detail & Related papers (2024-12-21T18:23:06Z) - Do LLMs Really Adapt to Domains? An Ontology Learning Perspective [2.0755366440393743]
Large Language Models (LLMs) have demonstrated unprecedented prowess across various natural language processing tasks in various application domains.
Recent studies show that LLMs can be leveraged to perform lexical semantic tasks, such as Knowledge Base Completion (KBC) or Ontology Learning (OL)
This paper investigates the question: Do LLMs really adapt to domains and remain consistent in the extraction of structured knowledge, or do they only learn lexical senses instead of reasoning?
arXiv Detail & Related papers (2024-07-29T13:29:43Z) - Can Large Language Models Understand DL-Lite Ontologies? An Empirical Study [10.051572826948762]
Large models (LLMs) have shown significant achievements in solving a wide range of tasks.
We empirically analyze the LLMs' capability of understanding Description Logic (DL-Lite)
We find that LLMs understand formal syntax and model-theoretic semantics of concepts and roles.
arXiv Detail & Related papers (2024-06-25T13:16:34Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias.
We propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics.
We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential.
We are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
arXiv Detail & Related papers (2024-05-10T11:44:05Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
Large language models (LLMs) demonstrate strong reasoning abilities when prompted to generate chain-of-thought explanations alongside answers.
We propose a novel discriminative and generative CoT evaluation paradigm to assess LLMs' knowledge of reasoning and the accuracy of the generated CoT.
arXiv Detail & Related papers (2024-02-17T05:22:56Z) - When LLMs Meet Cunning Texts: A Fallacy Understanding Benchmark for Large Language Models [59.84769254832941]
We propose a FaLlacy Understanding Benchmark (FLUB) containing cunning texts that are easy for humans to understand but difficult for models to grasp.
Specifically, the cunning texts that FLUB focuses on mainly consist of the tricky, humorous, and misleading texts collected from the real internet environment.
Based on FLUB, we investigate the performance of multiple representative and advanced LLMs.
arXiv Detail & Related papers (2024-02-16T22:12:53Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Limits for Learning with Language Models [4.20859414811553]
We show that large language models (LLMs) are unable to learn concepts beyond the first level of the Borel Hierarchy.
LLMs will continue to operate without formal guarantees on tasks that require entailments and deep linguistic understanding.
arXiv Detail & Related papers (2023-06-21T12:11:31Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.