論文の概要: Equivariant Spherical CNNs for Accurate Fiber Orientation Distribution Estimation in Neonatal Diffusion MRI with Reduced Acquisition Time
- arxiv url: http://arxiv.org/abs/2504.01925v1
- Date: Wed, 02 Apr 2025 17:36:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 19:59:19.462413
- Title: Equivariant Spherical CNNs for Accurate Fiber Orientation Distribution Estimation in Neonatal Diffusion MRI with Reduced Acquisition Time
- Title(参考訳): 乳児拡散MRIにおける高精度繊維配向分布推定のための同変球状CNN
- Authors: Haykel Snoussi, Davood Karimi,
- Abstract要約: 新生児dMRIに適した回転同変球状畳み込みニューラルネットワーク(SCNN)フレームワークを提案する。
我々は、43の新生児dMRIデータセットから得られた実データを用いて、sCNNの性能を訓練し、評価する。
- 参考スコア(独自算出の注目度): 1.675857332621569
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early and accurate assessment of brain microstructure using diffusion Magnetic Resonance Imaging (dMRI) is crucial for identifying neurodevelopmental disorders in neonates, but remains challenging due to low signal-to-noise ratio (SNR), motion artifacts, and ongoing myelination. In this study, we propose a rotationally equivariant Spherical Convolutional Neural Network (sCNN) framework tailored for neonatal dMRI. We predict the Fiber Orientation Distribution (FOD) from multi-shell dMRI signals acquired with a reduced set of gradient directions (30% of the full protocol), enabling faster and more cost-effective acquisitions. We train and evaluate the performance of our sCNN using real data from 43 neonatal dMRI datasets provided by the Developing Human Connectome Project (dHCP). Our results demonstrate that the sCNN achieves significantly lower mean squared error (MSE) and higher angular correlation coefficient (ACC) compared to a Multi-Layer Perceptron (MLP) baseline, indicating improved accuracy in FOD estimation. Furthermore, tractography results based on the sCNN-predicted FODs show improved anatomical plausibility, coverage, and coherence compared to those from the MLP. These findings highlight that sCNNs, with their inherent rotational equivariance, offer a promising approach for accurate and clinically efficient dMRI analysis, paving the way for improved diagnostic capabilities and characterization of early brain development.
- Abstract(参考訳): 拡散磁気共鳴イメージング(dMRI)を用いた脳組織の早期かつ正確な評価は、新生児の神経発達障害を特定する上で重要であるが、低信号-雑音比(SNR)、運動人工物、進行中の髄質化のために依然として困難である。
本研究では,新生児dMRIに適した回転同変球状畳み込みニューラルネットワーク(SCNN)フレームワークを提案する。
我々は、勾配方向の減少(全プロトコルの30%)で得られたマルチシェルdMRI信号から光ファイバー配向分布(FOD)を予測し、より高速でコスト効率の良い取得を可能にする。
開発人間コネクトームプロジェクト(dHCP)が提供する43の新生児dMRIデータセットの実際のデータを用いて、sCNNの性能を訓練し、評価する。
その結果,SCNNはMulti-Layer Perceptron (MLP) ベースラインと比較して平均二乗誤差 (MSE) と高角相関係数 (ACC) を著しく低減し,FOD推定の精度が向上していることが示唆された。
さらに, sCNN予測FODによるトラクトグラフィーの結果, MLPと比較すると, 解剖学的有用性, カバレッジ, コヒーレンスが改善された。
これらの結果から, sCNNは自発性回転同値で, 正確かつ臨床的に効率的なdMRI解析に有望なアプローチを提供し, 早期脳発生の診断能力の向上と特徴付けの道を開くことが示唆された。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Multi-Modality Conditioned Variational U-Net for Field-of-View Extension in Brain Diffusion MRI [10.096809077954095]
拡散磁気共鳴イメージング(dMRI)における不完全視野(FOV)は、全脳白質結合の体積および束解析を著しく阻害することができる。
FOVの取得部位における学習拡散特徴を脳解剖学的構造に組み込むことにより, FOVの不完全部分におけるdMRIスキャンを計算するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-20T18:41:29Z) - DDEvENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI [5.757390718589337]
EVENetは、拡散MRIを用いた解剖学的脳解析のためのエビデンスベースのエンサンブルニューラルネットワークである。
健常層および臨床集団の異なるデータセットの正確なパーセレーションと不確実性の推定値を得た。
この不確実性評価により,EVENet法は病変症例の異常脳領域の検出に有効であることが示された。
論文 参考訳(メタデータ) (2024-09-11T05:26:23Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) は、正常なトレーニング分布から異常を外れ値として識別することを目的としている。
生成モデルは、与えられた入力画像に対する健康な脳解剖の再構築を学ぶために使用される。
本稿では,入力画像の潜在表現から得られた付加情報を用いて拡散モデルの復調過程を条件付けることを提案する。
論文 参考訳(メタデータ) (2023-12-07T11:03:42Z) - ssVERDICT: Self-Supervised VERDICT-MRI for Enhanced Prostate Tumour
Characterisation [2.755232740505053]
トレーニングデータなしでVERDICT推定パラメータマップを適合させる自己教師型ニューラルネットワーク。
本研究では,SsVERDICTの性能を拡散MRIモデルに適合する2つの確立されたベースライン法と比較する。
論文 参考訳(メタデータ) (2023-09-12T14:31:33Z) - Preserved Edge Convolutional Neural Network for Sensitivity Enhancement
of Deuterium Metabolic Imaging (DMI) [10.884358837187243]
本研究は,Deuterium Metabolic Imaging (DMI)の感度向上のための深層学習手法を提案する。
畳み込みニューラルネットワーク(CNN)は低SNRから2H標識代謝物濃度を推定するために設計された。
推定精度は、MRIに基づく各DMIデータセットのエッジ保存正規化によるCNNの微調整によりさらに向上した。
論文 参考訳(メタデータ) (2023-09-08T03:41:54Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - Scale-Equivariant Unrolled Neural Networks for Data-Efficient
Accelerated MRI Reconstruction [33.82162420709648]
本稿では,大規模同変畳み込みニューラルネットワークを用いたニューラルネットワークの近位演算子をモデル化する。
我々のアプローチは、同じメモリ制約下での最先端のアンロールニューラルネットワークに対する強力な改善を示す。
論文 参考訳(メタデータ) (2022-04-21T23:29:52Z) - A Pathology-Based Machine Learning Method to Assist in Epithelial
Dysplasia Diagnosis [0.0]
上皮性Dysplasia(ED)は口腔癌に先行する病変にみられる組織変化である。
本研究では, 変形性上皮の検出を支援するために, 計算コストの低い分類システムを設計する手法を提案する。
論文 参考訳(メタデータ) (2022-04-07T16:45:28Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z) - Towards learned optimal q-space sampling in diffusion MRI [1.5640063295947522]
ファイバトラクトグラフィーのための統一的な推定フレームワークを提案する。
提案手法は,信号推定の精度とそれに続く解析精度を大幅に向上させる。
本稿では,Human Connectome Projectデータに基づく包括的比較分析を提案する。
論文 参考訳(メタデータ) (2020-09-07T10:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。